A Formalisation of Consistent Consequence for Boolean Equation Systems

  • Myrthe van Delft
  • Herman Geuvers
  • Tim A. C. WillemseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10499)


Boolean equation systems are sequences of least and greatest fixpoint equations interpreted over the Boolean lattice. Such equation systems arise naturally in verification problems such as the modal \(\mu \)-calculus model checking problem. Solving a Boolean equation system is a computationally challenging problem, and for this reason, abstraction techniques for Boolean equation systems have been developed. The notion of consistent consequence on Boolean equation systems was introduced to more effectively reason about such abstraction techniques. Prior work on consistent consequence claimed that this notion can be fully characterised by a sound and complete derivation system, building on rules for logical consequence. Our formalisation of the theory of consistent consequence and the derivation system in the proof assistant Coq reveals that the system is, nonetheless, unsound. We propose a fix for the derivation system and show that the resulting system (system CC) is indeed sound and complete for consistent consequence. Our formalisation of the consistent consequence theory furthermore points at a subtle mistake in the phrasing of its main theorem, and how to correct this.


  1. 1.
    Bertot, Y., Komendantsky, V.: Fixed point semantics and partial recursion in Coq. In: PPDP, pp. 89–96. ACM (2008)Google Scholar
  2. 2.
    Cranen, S., Gazda, M., Wesselink, W., Willemse, T.A.C.: Abstraction in fixpoint logic. ACM Trans. Comput. Log. 16(4/29), 29:1–29:39 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36742-7_15 CrossRefGoogle Scholar
  4. 4.
    Dittmann, C.: Positional determinacy of parity games. In: Archive of Formal Proofs (2015)Google Scholar
  5. 5.
    Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous concurrent systems using CADP. Acta Informatica 52(4), 337–392 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: a toolbox for the construction and analysis of distributed processes. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73368-3_18 CrossRefGoogle Scholar
  7. 7.
    Gazda, M.W., Willemse, T.A.C.: Consistent consequence for boolean equation systems. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 277–288. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27660-6_23 CrossRefGoogle Scholar
  8. 8.
    Keiren, J.J.A., Wesselink, W., Willemse, T.A.C.: Liveness analysis for parameterised boolean equation systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 219–234. Springer, Cham (2014). doi: 10.1007/978-3-319-11936-6_16 Google Scholar
  9. 9.
    Mader, A.: Modal \(\mu \)-calculus, model checking and Gauß elimination. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 72–88. Springer, Heidelberg (1995). doi: 10.1007/3-540-60630-0_4 CrossRefGoogle Scholar
  10. 10.
    Mader, A.: Verification of modal properties using boolean equation systems. Ph.D. thesis, Technische Universität München (1997)Google Scholar
  11. 11.
    Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sprenger, C.: A verified model checker for the modal \(\mu \)-calculus in Coq. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998). doi: 10.1007/BFb0054171 CrossRefGoogle Scholar
  13. 13.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(2), 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    The Coq Development Team.
  15. 15.
    van de Pol, J.C.: Operations on fixpoint equation systems. Unpublished note; available from the author upon requestGoogle Scholar
  16. 16.
    van Delft, M.E.C.: Consistent consequences formalized. Master’s thesis, Eindhoven University of Technology (2016)Google Scholar
  17. 17.
    van Delft, M.E.C., Geuvers, H., Willemse, T.A.C.
  18. 18.
    Willemse, T.A.C.: Consistent correlations for parameterised boolean equation systems with applications in correctness proofs for manipulations. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 584–598. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15375-4_40 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Myrthe van Delft
    • 1
  • Herman Geuvers
    • 2
    • 3
  • Tim A. C. Willemse
    • 3
    Email author
  1. 1.FortissMünchenGermany
  2. 2.Radboud University NijmegenNijmegenThe Netherlands
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations