Making PVS Accessible to Generic Services by Interpretation in a Universal Format

  • Michael Kohlhase
  • Dennis MüllerEmail author
  • Sam Owre
  • Florian Rabe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10499)


PVS is one of the most powerful proof assistant systems and its libraries of formalized mathematics are among the most comprehensive albeit under-appreciated ones. A characteristic feature of PVS is the use of a very rich mathematical and logical foundation, including e.g., record types, undecidable subtyping, and a deep integration of decision procedures. That makes it particularly difficult to develop integrations of PVS with other systems such as other reasoning tools or library management periphery.

This paper presents a translation of PVS and its libraries to the OMDoc/MMT framework that preserves the logical semantics and notations but makes further processing easy for third-party tools. OMDoc/MMT is a framework for formal knowledge that abstracts from logical foundations and concrete syntax to provide a universal representation format for formal libraries and interface layer for machine support. Our translation allows instantiating generic OMDoc/MMT-level tool support for the PVS library and enables future translations to libraries of other systems.



This work has been partially funded by DFG under Grants KO 2428/13-1 and RA-18723-1. The authors gratefully acknowledge the contribution of Marcel Rupprecht, who has extended the graph viewer for this paper.


  1. [BCH12]
    Boespflug, M., Carbonneaux, Q., Hermant, O.: The \(\lambda \Pi \)-calculus modulo as a universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)Google Scholar
  2. [GK14]
    Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 267–281. Springer, Cham (2014). doi: 10.1007/978-3-319-08434-3_20 CrossRefGoogle Scholar
  3. [GMP]
    MathHub PVS Git Repository. Accessed 11 Apr 2017
  4. [HHO93]
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach. 40(1), 143–184 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Ian+13]
    Iancu, M., et al.: The Mizar mathematical library in OMDoc: translation and applications. J. Automated Reason. 50(2), 191–202 (2013). doi: 10.1007/s10817-012-9271-4
  6. [Ian+14]
    Iancu, M., Jucovschi, C., Kohlhase, M., Wiesing, T.: System description: In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 431–434. Springer, Cham (2014). doi: 10.1007/978-3-319-08434-3_33. ISBN 978-3-319-08433-6CrossRefGoogle Scholar
  7. [Ian17]
    Iancu, M.: Towards flexiformal mathematics. Ph.D. thesis. Jacobs University, Bremen (2017)Google Scholar
  8. [Kal+16]
    Kaliszyk, C., et al.: A standard for aligning mathematical concepts. In: Kohlhase, M. et al. (eds.) Intelligent Computer Mathematics – Work in Progress Papers (2016).
  9. [Koh06]
    Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents (Version 1.2). Lecture Notes in Artificial Intelligence, vol. 4180. Springer, Heidelberg (2006)Google Scholar
  10. [KR14]
    Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL light. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 357–372. Springer, Cham (2014). doi: 10.1007/978-3-319-08434-3_26. ISBN 978-3-319-08433-6
  11. [KR16]
    Kohlhase, M., Rabe, F.: QED reloaded: towards a pluralistic formal library of mathematical knowledge. J. Formalized Reason. 9(1), 201–234 (2016)MathSciNetGoogle Scholar
  12. [KS10]
    Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 323–338. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14052-5_23 CrossRefGoogle Scholar
  13. [KU15]
    Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1), 5–22 (2015)CrossRefzbMATHGoogle Scholar
  14. [KW10]
    Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14052-5_22 CrossRefGoogle Scholar
  15. [KS06]
    Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS, vol. 4120, pp. 241–253. Springer, Heidelberg (2006). doi: 10.1007/11856290_21 CrossRefGoogle Scholar
  16. [Lan16a]
    NASA Langley. Hypatheon: A Database Capability for PVS Theories (2016).
  17. [Lan16b]
  18. [MH] Active Mathematics. Accessed 28 Jan 2014
  19. [MN86]
    Miller, D.A., Nadathur, G.: Higher-order logic programming. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 448–462. Springer, Heidelberg (1986). doi: 10.1007/3-540-16492-8_94 CrossRefGoogle Scholar
  20. [MP08]
    Meng, J., Paulson, L.: Translating higher-order clauses to first-order clauses. J. Automated Reason. 40(1), 35–60 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. [ORS92]
    Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). doi: 10.1007/3-540-55602-8_217 Google Scholar
  22. [OS06]
    Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 298–302. Springer, Heidelberg (2006). doi: 10.1007/11814771_27 CrossRefGoogle Scholar
  23. [Pfe+03]
    Pfenning, F., et al.: The Logosphere Project (2003).
  24. [PVS]
    The PVS libraries in OMDoc/MMT format. Accessed 29 May 2017
  25. [Rab14a]
    Rabe, F.: A logic-independent IDE. In: Benzmüller, C., Woltzenlogel Paleo, B. (eds.) Workshop on User Interfaces for Theorem Provers, pp. 48–60 (2014). ElsevierGoogle Scholar
  26. [Rab14b]
    Rabe, F.: How to identify, translate, and combine logics? J. Logic Comput. (2014). doi: 10.1093/logcom/exu079
  27. [Rab15]
    Rabe, F.: Generic literals. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 102–117. Springer, Cham (2015). doi: 10.1007/978-3-319-20615-8_7 CrossRefGoogle Scholar
  28. [Rab17]
    Rabe, F.: A Modular Type Reconstruction Algorithm (2017).
  29. [RK13]
    Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. [VJS]
    vis.js - A dynamic, browser based visualization library. Accessed 04 May 2017
  31. [Wat+14]
    Watt, S.M., et al. (eds.) Intelligent Computer Mathematics. LNCS, vol. 8543. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-08434-3. ISBN 978-3-319-08433-6

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Kohlhase
    • 1
  • Dennis Müller
    • 1
    Email author
  • Sam Owre
    • 2
  • Florian Rabe
    • 3
  1. 1.Computer ScienceFAU Erlangen-NürnbergErlangenGermany
  2. 2.SRI Palo AltoMenlo ParkUSA
  3. 3.Computer ScienceJacobs University BremenBremenGermany

Personalised recommendations