Formalizing Basic Quaternionic Analysis

  • Andrea Gabrielli
  • Marco MaggesiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10499)


We present a computer formalization of quaternions in the HOL Light theorem prover. We give an introduction to our library for potential users and we discuss some implementation choices.

As an application, we formalize some basic parts of two recently developed mathematical theories, namely, slice regular functions and Pythagorean-Hodograph curves.


  1. 1.
    Ciolli, G., Gentili, G., Maggesi, M.: A certified proof of the Cartan fixed point theorems. J. Automated Reason. 47(3), 319–336 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Farouki, R.T., Giannelli, C., Manni, C., Sestini, A.: Identification of spatial PH quintic hermite interpolants with near-optimal shape measures. Comput. Aided Geom. Des. 25(4), 274–297 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Geometry and Computing. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  4. 4.
    Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees. Adv. Appl. Clifford Algebras 24(2), 589–611 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gentili, G., Stoppato, C., Struppa, D.: Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gentili, G., Struppa, D.C.: A new approach to Cullen-regular functions of a quaternionic variable. Comptes Rendus Math. 342(10), 741–744 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005). doi: 10.1007/11541868_8 CrossRefGoogle Scholar
  8. 8.
    Harrison, J.: Formalizing basic complex analysis. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec. Studies in Logic, Grammar and Rhetoric, vol. 10, no. 23, pp. 151–165. University of Białystok (2007).
  9. 9.
    Ma, S., Shi, Z., Shao, Z., Guan, Y., Li, L., Li, Y.: Higher-order logic formalization of conformal geometric algebra and its application in verifying a robotic manipulation algorithm. Adv. Appl. Clifford Algebras 26(4), 1305–1330 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Spivak, M.: Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. Advanced Book Program. Avalon Publishing, New York (1965)zbMATHGoogle Scholar
  11. 11.
    Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(02), 199–225 (1979)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of FlorenceFlorenceItaly

Personalised recommendations