Skip to main content

A Formal Proof in Coq of LaSalle’s Invariance Principle

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10499))

Abstract

Stability analysis of dynamical systems plays an important role in the study of control techniques. LaSalle’s invariance principle is a result about the asymptotic stability of the solutions to a nonlinear system of differential equations and several extensions of this principle have been designed to fit different particular kinds of system. In this paper we present a formalization, in the Coq proof assistant, of a slightly improved version of the original principle. This is a step towards a formal verification of dynamical systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://math-comp.github.io/math-comp/.

  2. 2.

    https://github.com/drouhling/LaSalle.

  3. 3.

    http://www.lix.polytechnique.fr/coq/pylons/contribs/view/Topology/v8.4.

References

  1. Barkana, I.: Defending the beauty of the Invariance Principle. Int. J. Control 87(1), 186–206 (2014). http://dx.doi.org/10.1080/00207179.2013.826385

    Article  MathSciNet  Google Scholar 

  2. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2

    Book  MATH  Google Scholar 

  3. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A User-Friendly Library of Real Analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015). http://dx.doi.org/10.1007/s11786-014-0181-1

    Article  MathSciNet  Google Scholar 

  4. Cano, G.: Interaction entre algèbre linéaire et analyse en formalisation des mathématiques. (Interaction between linear algebra and analysis in formal mathematics). Ph.D. thesis, University of Nice Sophia Antipolis, France (2014). https://tel.archives-ouvertes.fr/tel-00986283

  5. Chan, M., Ricketts, D., Lerner, S., Malecha, G.: Formal Verification of Stability Properties of Cyber-Physical Systems, January 2016

    Google Scholar 

  6. Chellaboina, V., Leonessa, A., Haddad, W.M.: Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems. Syst. Control Lett. 38(4–5), 289–295 (1999). http://www.sciencedirect.com/science/article/pii/S0167691199000766

    Article  MathSciNet  Google Scholar 

  7. Darmochwał, A.: Compact Spaces. Formaliz. Math. 1(2), 383–386 (1990). http://fm.mizar.org/1990-1/pdf1-2/compts_1.pdf

    Google Scholar 

  8. Fischer, N.R., Kamalapurkar, R., Dixon, W.E.: LaSalle-Yoshizawa Corollaries for Nonsmooth Systems. IEEE Trans. Automat. Control 58(9), 2333–2338 (2013). http://dx.doi.org/10.1109/TAC.2013.2246900

    Article  MathSciNet  Google Scholar 

  9. Gonthier, G.: Formal Proof - The Four-Color Theorem. Notices AMS 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem. In: Blazy et al. [2], pp. 163–179 (2013). doi:10.1007/978-3-642-39634-2_14

  11. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Research Report RR-6455, Inria Saclay Ile de France (2015). https://hal.inria.fr/inria-00258384

  12. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L., Feron, E., Perez, G., Ascariz, P.: PVS linear algebra libraries for verification of control software algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 147–161. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28891-3_15

    Chapter  Google Scholar 

  13. Hölzl, J., Immler, F., Huffman, B.: Type Classes and Filters for Mathematical Analysis in Isabelle/HOL. In: Blazy et al. [2], pp. 279–294 (2013). doi:10.1007/978-3-642-39634-2_21

  14. Khalil, H.: Nonlinear Systems. Pearson Education, Prentice Hall (2002). https://books.google.fr/books?id=t_d1QgAACAAJ

  15. LaSalle, J.: Some Extensions of Liapunov’s Second Method. IRE Trans. Circ. Theory 7(4), 520–527 (1960)

    Article  MathSciNet  Google Scholar 

  16. Lester, D.R.: Topology in PVS: Continuous Mathematics with Applications. In: Proceedings of the Second Workshop on Automated Formal Methods, AFM 2007, pp. 11–20. ACM, New York (2007). http://doi.acm.org/10.1145/1345169.1345171

  17. Liapounoff, A.: Problème général de la stabilité du mouvement. In: Annales de la Faculté des sciences de Toulouse: Mathématiques, vol. 9, pp. 203–474 (1907). http://eudml.org/doc/72801

  18. Lozano, R., Fantoni, I., Block, D.: Stabilization of the inverted pendulum around its homoclinic orbit. Syst. Control Lett. 40(3), 197–204 (2000)

    Article  MathSciNet  Google Scholar 

  19. Mancilla-Aguilar, J.L., García, R.A.: An extension of LaSalle’s invariance principle for switched systems. Syst. Control Lett. 55(5), 376–384 (2006). http://dx.doi.org/10.1016/j.sysconle.2005.07.009

    Article  MathSciNet  Google Scholar 

  20. Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique. Ph.D. thesis, Université Paris VI (décembre 2001)

    Google Scholar 

  21. Mitra, S., Chandy, K.M.: A Formalized Theory for Verifying Stability and Convergence of Automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71067-7_20

    Chapter  MATH  Google Scholar 

  22. Padlewska, B., Darmochwał, A.: Topological Spaces and Continuous Functions. Formaliz. Math. 1(1), 223–230 (1990). http://fm.mizar.org/1990-1/pdf1-1/pre_topc.pdf

    Google Scholar 

  23. The Coq Development Team: The Coq proof assistant reference manual, version 8.6. (2016). http://coq.inria.fr

  24. Wilansky, A.: Topology for Analysis. Dover Books on Mathematics. Dover Publications, New York (2008). http://cds.cern.ch/record/2222525

Download references

Acknowledgements

We thank the anonymous reviewers for their useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cyril Cohen or Damien Rouhling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cohen, C., Rouhling, D. (2017). A Formal Proof in Coq of LaSalle’s Invariance Principle. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics