A Formal Proof in Coq of LaSalle’s Invariance Principle

  • Cyril CohenEmail author
  • Damien RouhlingEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10499)


Stability analysis of dynamical systems plays an important role in the study of control techniques. LaSalle’s invariance principle is a result about the asymptotic stability of the solutions to a nonlinear system of differential equations and several extensions of this principle have been designed to fit different particular kinds of system. In this paper we present a formalization, in the Coq proof assistant, of a slightly improved version of the original principle. This is a step towards a formal verification of dynamical systems.


Formal proofs Coq Dynamical systems Stability 



We thank the anonymous reviewers for their useful feedback.


  1. 1.
    Barkana, I.: Defending the beauty of the Invariance Principle. Int. J. Control 87(1), 186–206 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39634-2 zbMATHGoogle Scholar
  3. 3.
    Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A User-Friendly Library of Real Analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cano, G.: Interaction entre algèbre linéaire et analyse en formalisation des mathématiques. (Interaction between linear algebra and analysis in formal mathematics). Ph.D. thesis, University of Nice Sophia Antipolis, France (2014).
  5. 5.
    Chan, M., Ricketts, D., Lerner, S., Malecha, G.: Formal Verification of Stability Properties of Cyber-Physical Systems, January 2016Google Scholar
  6. 6.
    Chellaboina, V., Leonessa, A., Haddad, W.M.: Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems. Syst. Control Lett. 38(4–5), 289–295 (1999). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Darmochwał, A.: Compact Spaces. Formaliz. Math. 1(2), 383–386 (1990). Google Scholar
  8. 8.
    Fischer, N.R., Kamalapurkar, R., Dixon, W.E.: LaSalle-Yoshizawa Corollaries for Nonsmooth Systems. IEEE Trans. Automat. Control 58(9), 2333–2338 (2013). MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gonthier, G.: Formal Proof - The Four-Color Theorem. Notices AMS 55(11), 1382–1393 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem. In: Blazy et al. [2], pp. 163–179 (2013). doi: 10.1007/978-3-642-39634-2_14
  11. 11.
    Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Research Report RR-6455, Inria Saclay Ile de France (2015).
  12. 12.
    Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L., Feron, E., Perez, G., Ascariz, P.: PVS linear algebra libraries for verification of control software algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 147–161. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28891-3_15 CrossRefGoogle Scholar
  13. 13.
    Hölzl, J., Immler, F., Huffman, B.: Type Classes and Filters for Mathematical Analysis in Isabelle/HOL. In: Blazy et al. [2], pp. 279–294 (2013). doi: 10.1007/978-3-642-39634-2_21
  14. 14.
    Khalil, H.: Nonlinear Systems. Pearson Education, Prentice Hall (2002).
  15. 15.
    LaSalle, J.: Some Extensions of Liapunov’s Second Method. IRE Trans. Circ. Theory 7(4), 520–527 (1960)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lester, D.R.: Topology in PVS: Continuous Mathematics with Applications. In: Proceedings of the Second Workshop on Automated Formal Methods, AFM 2007, pp. 11–20. ACM, New York (2007).
  17. 17.
    Liapounoff, A.: Problème général de la stabilité du mouvement. In: Annales de la Faculté des sciences de Toulouse: Mathématiques, vol. 9, pp. 203–474 (1907).
  18. 18.
    Lozano, R., Fantoni, I., Block, D.: Stabilization of the inverted pendulum around its homoclinic orbit. Syst. Control Lett. 40(3), 197–204 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mancilla-Aguilar, J.L., García, R.A.: An extension of LaSalle’s invariance principle for switched systems. Syst. Control Lett. 55(5), 376–384 (2006). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Mayero, M.: Formalisation et automatisation de preuves en analyses réelle et numérique. Ph.D. thesis, Université Paris VI (décembre 2001)Google Scholar
  21. 21.
    Mitra, S., Chandy, K.M.: A Formalized Theory for Verifying Stability and Convergence of Automata in PVS. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 230–245. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71067-7_20 CrossRefGoogle Scholar
  22. 22.
    Padlewska, B., Darmochwał, A.: Topological Spaces and Continuous Functions. Formaliz. Math. 1(1), 223–230 (1990). Google Scholar
  23. 23.
    The Coq Development Team: The Coq proof assistant reference manual, version 8.6. (2016).
  24. 24.
    Wilansky, A.: Topology for Analysis. Dover Books on Mathematics. Dover Publications, New York (2008).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Côte d’Azur, InriaSophia AntipolisFrance

Personalised recommendations