Solid-Binding Peptides in Biomedicine

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1030)

Abstract

Some peptides are able to bind to inorganic materials such as silica and gold. Over the past decade, Solid-binding peptides (SBPs) have been used increasingly as molecular building blocks in nanobiotechnology. These peptides show selectivity and bind with high affinity to a diverse range of inorganic surfaces e.g. metals, metal oxides, metal compounds, magnetic materials, semiconductors, carbon materials, polymers and minerals. They can be used in applications such as protein purification and synthesis, assembly and the functionalization of nanomaterials. They offer simple and versatile bioconjugation methods that can increase biocompatibility and also direct the immobilization and orientation of nanoscale entities onto solid supports without impeding their functionality. SBPs have been employed in numerous nanobiotechnological applications such as the controlled synthesis of nanomaterials and nanostructures, formation of hybrid biomaterials, immobilization of functional proteins and improved nanomaterial biocompatibility. With advances in nanotechnology, a multitude of novel nanomaterials have been designed and synthesized for diagnostic and therapeutic applications. New approaches have been developed recently to exert a greater control over bioconjugation and eventually, over the optimal and functional display of biomolecules on the surfaces of many types of solid materials. In this chapter we describe SBPs and highlight some selected examples of their potential applications in biomedicine.

Keywords

Bioconjugation Biomaterials Functionalization Biomedicine Solid-binding peptides 

References

  1. Akerström B, Björck L (1989) Protein L: an immunoglobulin light chain-binding bacterial protein. Characterization of binding and physicochemical properties. J Biol Chem 264:19740–19746PubMedGoogle Scholar
  2. Avvakumova S, Colombo M, Tortora P, Prosperi D (2014) Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol 32:11–20CrossRefPubMedGoogle Scholar
  3. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25CrossRefPubMedGoogle Scholar
  5. Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotech 15:269–272CrossRefGoogle Scholar
  6. Brown S, Sarikaya M, Johnson E (2000) A genetic analysis of crystal growth. J Mol Biol 299:725–735CrossRefPubMedGoogle Scholar
  7. Care A, Chi F, Bergquist P, Sunna A (2014a) Biofunctionalization of silica-coated magnetic particles mediated by a peptide. J Nanopart Res 16:1–9CrossRefGoogle Scholar
  8. Care A, Nevalainen H, Bergquist P, Sunna A (2014b) Effect of Trichoderma reesei proteinases on the affinity of an inorganic-binding peptide. Appl Biochem Biotechnol 173:2225–2240CrossRefPubMedGoogle Scholar
  9. Care A, Bergquist PL, Sunna A (2015) Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol 33:259–268CrossRefPubMedGoogle Scholar
  10. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chiu D, Zhou W, Kitayaporn S, Schwartz DT, Murali-Krishna K, Kavanagh TJ, Baneyx F (2012) Biomineralization and size control of stable calcium phosphate core–protein shell nanoparticles: potential for vaccine applications. Bioconjug Chem 23:610–617CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cho N-H, Cheong T-C, Min JH, Wu JH, Lee SJ, Kim D, Yang J-S, Kim S, Kim YK, Seong S-Y (2011) A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat Nano 6:675–682CrossRefGoogle Scholar
  13. Chung W-J, Kwon K-Y, Song J, Lee S-W (2011) Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27:7620–7628CrossRefPubMedGoogle Scholar
  14. Corni S, Hnilova M, Tamerler C, Sarikaya M (2013) Conformational behavior of genetically-engineered dodecapeptides as a determinant of binding affinity for gold. J Phys Chem C Nanomater Interfaces 117:16990–17003CrossRefGoogle Scholar
  15. Cui Y, Kim SN, Jones SE, Wissler LL, Naik RR, McAlpine MC (2010) Chemical functionalization of graphene enabled by phage displayed peptides. Nano Lett 10:4559–4565CrossRefPubMedGoogle Scholar
  16. Dang X, Yi H, Ham M-H, Qi J, Yun DS, Ladewski R, Strano MS, Hammond PT, Belcher AM (2011) Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat Nano 6:377–384CrossRefGoogle Scholar
  17. de Juan-Franco E, Caruz A, Pedrajas J, Lechuga LM (2013) Site-directed antibody immobilization using a protein A–gold binding domain fusion protein for enhanced SPR immunosensing. Analyst 138:2023–2031CrossRefPubMedGoogle Scholar
  18. de Oliveira PT, Zalzal SF, Beloti MM, Rosa AL, Nanci A (2007) Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res A 80:554–564CrossRefPubMedGoogle Scholar
  19. Eteshola E, Brillson LJ, Lee SC (2005) Selection and characteristics of peptides that bind thermally grown silicon dioxide films. Biomol Eng 22:201–204CrossRefPubMedGoogle Scholar
  20. Flynn CE, Mao C, Hayhurst A, Williams JL, Georgiou G, Iverson B, Belcher AM (2003) Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly. J Mater Chem 13:2414–2421CrossRefGoogle Scholar
  21. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A 111:13948–13953CrossRefPubMedPubMedCentralGoogle Scholar
  22. Giessen TW, Silver PA (2016) Converting a natural protein compartment into a nanofactory for the size-constrained synthesis of antimicrobial silver nanoparticles. ACS Synth Biol 5:1497–1504CrossRefPubMedGoogle Scholar
  23. Goede K, Busch P, Grundmann M (2004) Binding specificity of a peptide on semiconductor surfaces. Nano Lett 4:2115–2120CrossRefGoogle Scholar
  24. Gogoladze G, Grigolava M, Vishnepolsky B, Chubinidze M, Duroux P, Lefranc M-P, Pirtskhalava M (2014) DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357:63–68CrossRefPubMedGoogle Scholar
  25. Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9:966–973CrossRefPubMedGoogle Scholar
  26. Ha N-Y, Shin HM, Sharma P, Cho HA, Min C-K, H-i K, Yen NTH, Kang J-S, Kim I-S, Choi M-S, Kim YK, Cho N-H (2016) Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen. J Nanobiotechnol 14:76CrossRefGoogle Scholar
  27. Hnilova M, Oren EE, Seker UOS, Wilson BR, Collino S, Evans JS, Tamerler C, Sarikaya M (2008) Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir 24:12440–12445CrossRefPubMedGoogle Scholar
  28. Hochuli E, Bannwarth W, Döbeli H, Gentz R, Stüber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Nat Biotechnol 6:1321–1325CrossRefGoogle Scholar
  29. Huang Y, Chiang C-Y, Lee SK, Gao Y, Hu EL, Yoreo JD, Belcher AM (2005) Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett 5:1429–1434CrossRefPubMedGoogle Scholar
  30. Huang J, Ru B, Zhu P, Nie F, Yang J, Wang X, Dai P, Lin H, Guo F-B, Rao N (2012) MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res 40:D271–D277CrossRefPubMedGoogle Scholar
  31. Huang Z-B, Shi X, Mao J, S-q G (2016) Design of a hydroxyapatite-binding antimicrobial peptide with improved retention and antibacterial efficacy for oral pathogen control. Sci Rep 6:38410CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kase D, Kulp JL, Yudasaka M, Evans JS, Iijima S, Shiba K (2004) Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability. Langmuir 20:8939–8941CrossRefPubMedGoogle Scholar
  33. Kelly M, Williams R, Aojula A, O'Neill J, Trzińscka Z, Grover L, Scott RA, Peacock AF, Logan A, Stamboulis A (2015) Peptide aptamers: novel coatings for orthopaedic implants. Mater Sci Eng C Mater Biol Appl 54:84–93CrossRefPubMedGoogle Scholar
  34. Khatayevich D, Gungormus M, Yazici H, So C, Cetinel S, Ma H, Jen A, Tamerler C, Sarikaya M (2010) Biofunctionalization of materials for implants using engineered peptides. Acta Biomater 6:4634–4641CrossRefPubMedGoogle Scholar
  35. Kim J, Rheem Y, Yoo B, Chong Y, Bozhilov KN, Kim D, Sadowsky MJ, Hur H-G, Myung NV (2010) Peptide-mediated shape- and size-tunable synthesis of gold nanostructures. Acta Biomater 6:2681–2689CrossRefPubMedGoogle Scholar
  36. Ko S, Park TJ, Kim H-S, Kim J-H, Cho Y-J (2009) Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors. Biosens Bioelectron 24:2592–2597CrossRefPubMedGoogle Scholar
  37. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRefPubMedGoogle Scholar
  38. Li Y, Huang Y (2010) Morphology-controlled synthesis of platinum nanocrystals with specific peptides. Adv Mater Res 22:1921–1925CrossRefGoogle Scholar
  39. Liang L, Care A, Zhang R, Lu Y, Packer NH, Sunna A, Qian Y, Zvyagin AV (2016) Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy. ACS Appl Mater Interfaces 8:11945–11953CrossRefPubMedGoogle Scholar
  40. Liang L, Lu Y, Zhang R, Care A, Ortega TA, Deyev SM, Qian Y, Zvyagin AV (2017) Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles. Acta Biomater 51:461–470CrossRefPubMedGoogle Scholar
  41. Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J, Shi Y, Leif RC, Huo Y, Shen J, Piper JA, Robinson JP, Jin D (2014) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photon 8:32–36CrossRefGoogle Scholar
  42. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042CrossRefPubMedGoogle Scholar
  43. Mann JA, Dichtel WR (2013) Noncovalent functionalization of graphene by molecular and polymeric adsorbates. J Phys Chem Lett 4:2649–2657CrossRefGoogle Scholar
  44. Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, Verma N, Omenetto FG, McAlpine MC (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763CrossRefPubMedGoogle Scholar
  45. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci U S A 100:6946–6951CrossRefPubMedPubMedCentralGoogle Scholar
  46. Naik RR, Brott LL, Clarson SJ, Stone MO (2002a) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2:95–100CrossRefPubMedGoogle Scholar
  47. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002b) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172CrossRefPubMedGoogle Scholar
  48. Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888CrossRefPubMedGoogle Scholar
  49. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557CrossRefPubMedGoogle Scholar
  50. Nochomovitz R, Amit M, Matmor M, Ashkenasy N (2010) Bioassisted multi-nanoparticle patterning using single-layer peptide templates. Nanotechnology 21:145305CrossRefPubMedGoogle Scholar
  51. Nygaard S, Wendelbo R, Brown S (2002) Surface-specific zeolite-binding proteins. Adv Mater Res 14:1853–1856CrossRefGoogle Scholar
  52. Oren EE, Tamerler C, Sahin D, Hnilova M, Seker UOS, Sarikaya M, Samudrala R (2007) A novel knowledge-based approach to design inorganic-binding peptides. Bioinformatics 23:2816–2822CrossRefPubMedGoogle Scholar
  53. Pacardo DB, Sethi M, Jones SE, Naik RR, Knecht MR (2009) Biomimetic synthesis of Pd nanocatalysts for the Stille coupling reaction. ACS Nano 3:1288–1296CrossRefPubMedGoogle Scholar
  54. Park TJ, Zheng S, Kang YJ, Lee SY (2009) Development of a whole-cell biosensor by cell surface display of a gold-binding polypeptide on the gold surface. FEMS Microbiol Lett 293:141–147CrossRefPubMedGoogle Scholar
  55. Pender MJ, Sowards LA, Hartgerink JD, Stone MO, Naik RR (2005) Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett 6:40–44CrossRefGoogle Scholar
  56. Puddu V, Perry CC (2012) Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6:6356–6363CrossRefPubMedGoogle Scholar
  57. Ramaraju H, Miller SJ, Kohn DH (2014) Dual-functioning phage-derived peptides encourage human bone marrow cell-specific attachment to mineralized biomaterials. Connect Tissue Res 55:160–163CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sano K, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125:14234–14235CrossRefPubMedGoogle Scholar
  59. Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585CrossRefPubMedGoogle Scholar
  60. Sayyadi N, Care A, Connally RE, Try AC, Bergquist PL, Sunna A (2016) A novel universal detection agent for time-gated luminescence bioimaging. Sci Rep 6:27564CrossRefPubMedPubMedCentralGoogle Scholar
  61. Seker UOS, Wilson B, Sahin D, Tamerler C, Sarikaya M (2008) Quantitative affinity of genetically engineered repeating polypeptides to inorganic surfaces. Biomacromolecules 10:250–257CrossRefGoogle Scholar
  62. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sunna A, Chi F, Bergquist PL (2013a) Efficient capture of pathogens with a zeolite matrix. Parasitol Res 112:2441–2452CrossRefPubMedGoogle Scholar
  64. Sunna A, Chi F, Bergquist PL (2013b) A linker peptide with high affinity towards silica-containing materials. New Biotechnol 30:485–492CrossRefGoogle Scholar
  65. Tang Z, Palafox-Hernandez JP, Law W-C, Hughes ZE, Swihart MT, Prasad PN, Knecht MR, Walsh TR (2013) Biomolecular recognition principles for bionanocombinatorics: an integrated approach to elucidate enthalpic and entropic factors. ACS Nano 7:9632–9646CrossRefPubMedGoogle Scholar
  66. Thai CK, Dai H, Sastry MSR, Sarikaya M, Schwartz DT, Baneyx F (2004) Identification and characterization of Cu2O- and ZnO-binding polypeptides by Escherichia coli cell surface display: toward an understanding of metal oxide binding. Biotechnol Bioeng 87:129–137CrossRefPubMedGoogle Scholar
  67. Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, Joshi A, Singh S, Gautam A, Raghava GPS (2015) CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 43:D837–D843CrossRefPubMedGoogle Scholar
  68. Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S, Watanabe H, Kumagai I, Adschiri T (2005) Bioassisted room-temperature immobilization and mineralization of zinc oxide—the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv Mater Res 17:2571–2575CrossRefGoogle Scholar
  69. Umlauf BJ, McGuire MJ, Brown KC (2014) Introduction of plasmid encoding for rare tRNAs reduces amplification bias in phage display biopanning. BioTechniques 58:81Google Scholar
  70. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668CrossRefPubMedGoogle Scholar
  71. Yazici H, Fong H, Wilson B, Oren EE, Amos FA, Zhang H, Evans JS, Snead ML, Sarikaya M, Tamerler C (2013) Biological response on a titanium implant-grade surface functionalized with modular peptides. Acta Biomater 9:5341–5352CrossRefPubMedGoogle Scholar
  72. Yazici H, O’Neill MB, Kacar T, Wilson BR, Oren EE, Sarikaya M, Tamerler C (2016) Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl Mater Interfaces 8:5070–5081CrossRefPubMedPubMedCentralGoogle Scholar
  73. Yi X, Wang F, Qin W, Yang X, Yuan J (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine 9:1347CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling 26:103–110CrossRefPubMedGoogle Scholar
  75. Yoshinari M, Matsuzaka K, Inoue T (2011) Surface modification by cold-plasma technique for dental implants—bio-functionalization with binding pharmaceuticals. Jpn Dent Sci Rev 47:89–101CrossRefGoogle Scholar
  76. Yuasa K, Kokubu E, Kokubun K, Matsuzaka K, Shiba K, Kashiwagi K, Inoue T (2014) An artificial fusion protein between bone morphogenetic protein 2 and titanium-binding peptide is functional in vivo. J Biomed Mater Res A 102:1180–1186CrossRefPubMedGoogle Scholar
  77. Yuca E, Karatas AY, Seker UOS, Gungormus M, Dinler-Doganay G, Sarikaya M, Tamerler C (2011) In vitro labeling of hydroxyapatite minerals by an engineered protein. Biotechnol Bioeng 108:1021–1030CrossRefPubMedGoogle Scholar
  78. Zhang Y, Zheng F, Yang T, Zhou W, Liu Y, Man N, Zhang L, Jin N, Dou Q, Zhang Y, Li Z, Wen L-P (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11:817–826CrossRefPubMedGoogle Scholar
  79. Zhou W, Schwartz DT, Baneyx F (2010) Single-pot biofabrication of zinc sulfide immuno-quantum dots. J Am Chem Soc 132:4731–4738CrossRefPubMedGoogle Scholar
  80. Zhou W, Moguche AO, Chiu D, Murali-Krishna K, Baneyx F (2014) Just-in-time vaccines: biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8+ T cell responses in mice. Nanomedicine 10:571–578CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrew Care
    • 1
  • Peter L. Bergquist
    • 2
    • 3
    • 4
  • Anwar Sunna
    • 2
    • 4
  1. 1.Department of Chemistry and Biomolecular SciencesMacquarie UniversityNorth RydeAustralia
  2. 2.ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)Macquarie UniversityNorth RydeAustralia
  3. 3.Biomolecular Discovery and Design Research CentreMacquarie UniversityNorth RydeAustralia
  4. 4.Department of Molecular Medicine & Pathology, Medical SchoolUniversity of AucklandAucklandNew Zealand

Personalised recommendations