Advertisement

Empowering the Potential of Cell-Penetrating Peptides for Targeted Intracellular Delivery via Molecular Self-Assembly

  • Yejiao Shi
  • João Conde
  • Helena S. AzevedoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1030)

Abstract

Cell-penetrating peptides (CPPs) have been widely explored as an effective tool to deliver a variety of molecules and nanoparticles into cells due to their intrinsic property to translocate across cell membranes. CPPs are easier to synthesize and functionalize, and their incorporation into delivery vehicles could be achieved by both non-covalent and covalent methods. Recent advances in molecular self-assembly have demonstrated the possibility to fabricate various nanostructures with precise control over the shape, size and presentation of diverse functionalities. Through rational design, CPPs could be used as a building block for the nanostructure formation via self-assembly, while providing the functionality for intracellular delivery. In this book chapter, we will describe strategies to design self-assembling CPP conjugates and illustrate how their self-assembled nanostructures are manipulated for effective intracellular delivery. Fundamental knowledge on CPPs and molecular self-assembly will also be described.

Keywords

Self-assembly Cell-penetrating peptides Multifunctional Stimuli-responsive Targeted delivery Intracellular delivery 

Notes

Acknowledgments

Y. Shi thanks the China Scholarship Council for her PhD scholarship (No.201307060020) and J. Conde acknowledges Marie Curie International Outgoing Fellowship (FP7-PEOPLE-2013-IOF, Project No. 626386).

References

  1. Bode SA, Thevenin M, Bechara C, Sagan S, Bregant S, Lavielle S, Chassaing G, Burlina F (2012) Self-assembling mini cell-penetrating peptides enter by both direct translocation and glycosaminoglycan-dependent endocytosis. Chem Commun 48(57):7179–7181. https://doi.org/10.1039/c2cc33240j CrossRefGoogle Scholar
  2. Chaloin L, Vidal P, Lory P, Mery J, Lautredou N, Divita G, Heitz F (1998) Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem Biophys Res Commun 243(2):601–608. https://doi.org/10.1006/bbrc.1997.8050 CrossRefPubMedGoogle Scholar
  3. Chen JX, Xu XD, Chen WH, Zhang XZ (2014) Multi-functional envelope-type nanoparticles assembled from amphiphilic peptidic prodrug with improved anti-tumor activity. ACS Appl Mater Interfaces 6(1):593–598. https://doi.org/10.1021/am404680n CrossRefPubMedGoogle Scholar
  4. Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications.ACS. Nano 8(3):1972–1994. https://doi.org/10.1021/nn4057269 Google Scholar
  5. Crombez L, Aldrian-Herrada G, Konate K, Nguyen QN, McMaster GK, Brasseur R, Heitz F, Divita G (2009) A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 17(1):95–103. https://doi.org/10.1038/mt.2008.215 CrossRefPubMedGoogle Scholar
  6. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18. https://doi.org/10.1002/bip.21328 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450PubMedGoogle Scholar
  8. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F (2014) Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides 57:78–94. https://doi.org/10.1016/j.peptides.2014.04.015 CrossRefPubMedGoogle Scholar
  9. Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61(11):953–964. https://doi.org/10.1016/j.addr.2009.06.001 CrossRefPubMedGoogle Scholar
  10. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193CrossRefPubMedGoogle Scholar
  11. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840. https://doi.org/10.1074/jbc.M007540200 CrossRefPubMedGoogle Scholar
  12. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6):1179–1188CrossRefPubMedGoogle Scholar
  13. Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60. https://doi.org/10.1016/j.nantod.2016.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6(1):52–57. https://doi.org/10.1038/nmat1794 CrossRefPubMedGoogle Scholar
  15. Juliano RL, Alam R, Dixit V, Kang HM (2009) Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(3):324–335. https://doi.org/10.1002/wnan.4 CrossRefPubMedGoogle Scholar
  16. Kanazawa T, Taki H, Tanaka K, Takashima Y, Okada H (2011) Cell-penetrating peptide-modified block copolymer micelles promote direct brain delivery via intranasal administration. Pharm Res 28(9):2130–2139. https://doi.org/10.1007/s11095-011-0440-7 CrossRefPubMedGoogle Scholar
  17. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10(6):625–632CrossRefPubMedGoogle Scholar
  18. Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18(7):385–393. https://doi.org/10.1016/j.molmed.2012.04.012 CrossRefPubMedGoogle Scholar
  19. Lim YB, Lee E, Lee M (2007a) Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. Angew Chem 46(19):3475–3478. https://doi.org/10.1002/anie.200604576 CrossRefGoogle Scholar
  20. Lim YB, Lee E, Lee M (2007b) Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angew Chem 46(47):9011–9014. https://doi.org/10.1002/anie.200702732 CrossRefGoogle Scholar
  21. Lim YB, Moon KS, Lee M (2009) Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 38(4):925–934. https://doi.org/10.1039/b809741k CrossRefPubMedGoogle Scholar
  22. Liu L, Xu K, Wang H, Tan PK, Fan W, Venkatraman SS, Li L, Yang YY (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463. https://doi.org/10.1038/nnano.2009.153 CrossRefPubMedGoogle Scholar
  23. Lock LL, Cheetham AG, Zhang P, Cui H (2013) Design and construction of supramolecular nanobeacons for enzyme detection. ACS Nano 7(6):4924–4932. https://doi.org/10.1021/nn400218a CrossRefPubMedGoogle Scholar
  24. Macewan SR, Chilkoti A (2012) Digital switching of local arginine density in a genetically encoded self-assembled polypeptide nanoparticle controls cellular uptake. Nano Lett 12(6):3322–3328. https://doi.org/10.1021/nl301529p CrossRefPubMedPubMedCentralGoogle Scholar
  25. MacEwan SR, Chilkoti A (2013) Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(1):31–48. https://doi.org/10.1002/wnan.1197 CrossRefPubMedGoogle Scholar
  26. MacEwan SR, Chilkoti A (2014) Controlled apoptosis by a thermally toggled nanoscale amplifier of cellular uptake. Nano Lett 14(4):2058–2064. https://doi.org/10.1021/nl5002313 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mae M, Langel U (2006) Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 6(5):509–514. https://doi.org/10.1016/j.coph.2006.04.004 CrossRefPubMedGoogle Scholar
  28. Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(6):582–612. https://doi.org/10.1002/wnan.1238 CrossRefPubMedGoogle Scholar
  29. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15-16):850–860. https://doi.org/10.1016/j.drudis.2012.03.002 CrossRefPubMedGoogle Scholar
  30. Nakase I, Akita H, Kogure K, Graslund A, Langel U, Harashima H, Futaki S (2012) Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 45(7):1132–1139. https://doi.org/10.1021/ar200256e CrossRefPubMedGoogle Scholar
  31. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414(1-2):127–139CrossRefPubMedGoogle Scholar
  32. Pooga M, Hallbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12(1):67–77PubMedGoogle Scholar
  33. Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560–570. https://doi.org/10.1016/j.molmed.2015.06.005 CrossRefPubMedGoogle Scholar
  34. Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20(10):760–784. https://doi.org/10.1002/psc.2672 CrossRefPubMedGoogle Scholar
  35. Saalik P, Elmquist A, Hansen M, Padari K, Saar K, Viht K, Langel U, Pooga M (2004) Protein cargo delivery properties of cell-penetrating peptides. A comparative study. Bioconjug Chem 15(6):1246–1253. https://doi.org/10.1021/bc049938y CrossRefPubMedGoogle Scholar
  36. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67(5):715–726. https://doi.org/10.1007/s00018-009-0186-0 CrossRefPubMedGoogle Scholar
  37. Tian R, Wang H, Niu R, Ding D (2015) Drug delivery with nanospherical supramolecular cell penetrating peptide-taxol conjugates containing a high drug loading. J Colloid Interface Sci 453:15–20. https://doi.org/10.1016/j.jcis.2015.04.028 CrossRefPubMedGoogle Scholar
  38. Toksöz S, Guler MO (2009) Self-assembled peptidic nanostructures. Nano Today 4(6):458–469CrossRefGoogle Scholar
  39. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13(11):813–827. https://doi.org/10.1038/nrd4333 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tu Y, Zhu L (2015) Enhancing cancer targeting and anticancer activity by a stimulus-sensitive multifunctional polymer-drug conjugate. J Control Release 212:94–102. https://doi.org/10.1016/j.jconrel.2015.06.024 CrossRefPubMedGoogle Scholar
  41. Tünnemann G, Ter-Avetisyan G, Martin RM, Stöckl M, Herrmann A, Cardoso MC (2008) Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci 14(4):469–476CrossRefPubMedGoogle Scholar
  42. Wang HY, Chen JX, Sun YX, Deng JZ, Li C, Zhang XZ, Zhuo RX (2011) Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 155(1):26–33. https://doi.org/10.1016/j.jconrel.2010.12.009 CrossRefPubMedGoogle Scholar
  43. Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F (2014) Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release 174:126–136. https://doi.org/10.1016/j.jconrel.2013.11.020 CrossRefPubMedGoogle Scholar
  44. Won YW, Adhikary PP, Lim KS, Kim HJ, Kim JK, Kim YH (2014) Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat Mat 13(12):1157–1164. https://doi.org/10.1038/nmat4092 CrossRefGoogle Scholar
  45. Yoon YR, Lim YB, Lee E, Lee M (2008) Self-assembly of a peptide rod-coil: a polyproline rod and a cell-penetrating peptide tat coil. Chem Commun 16:1892–1894. https://doi.org/10.1039/b719868j CrossRefGoogle Scholar
  46. Zhang P, Cheetham AG, Lin YA, Cui H (2013) Self-assembled Tat nanofibers as effective drug carrier and transporter. ACS Nano 7(7):5965–5977. https://doi.org/10.1021/nn401667z CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhang Q, Gao H, He Q (2015) Taming cell penetrating peptides: never too old to teach old dogs new tricks. Mol Pharm 12(9):3105–3118. https://doi.org/10.1021/acs.molpharmaceut.5b00428 CrossRefPubMedGoogle Scholar
  48. Zhao XL, Chen BC, Han JC, Wei L, Pan XB (2015) Delivery of cell-penetrating peptide-peptide nucleic acid conjugates by assembly on an oligonucleotide scaffold. Sci Rep 5:17640. https://doi.org/10.1038/srep17640 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhu X, Shan W, Zhang P, Jin Y, Guan S, Fan T, Yang Y, Zhou Z, Huang Y (2014) Penetratin derivative-based nanocomplexes for enhanced intestinal insulin delivery. Mol Pharm 11(1):317–328. https://doi.org/10.1021/mp400493b CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Engineering and Materials Science, Institute of Bioengineering, Queen MaryUniversity of LondonLondonUK

Personalised recommendations