Abstract
This paper presents the application of the high-resolution WRF model data for the automatic classification of the atmospheric circulation types and the evaluation of the model results for daily rainfall and air temperatures. The WRF model evaluation is performed by comparison with measurements and gridded data (E-OBS). The study is focused on the area of Poland and covers the 1981–2010 period, for which the WRF model has been run using three nested domains with spatial resolution of 45 km × 45 km, 15 km × 15 km and 5 km × 5 km. For the model evaluation, we have used the data from the innermost domain, and data from the second domain were used for circulation typology. According to the circulation type analysis, the anticyclonic types (AAD and AAW) are the most frequent. The WRF model is able to reproduce the daily air temperatures and the error statistics are better, compared with the interpolation-based gridded dataset. The high-resolution WRF model shows a higher spatial variability of both air temperature and rainfall, compared with the E-OBS dataset. For the rainfall, the WRF model, in general, overestimates the measured values. The model performance shows a seasonal pattern and is also dependent on the atmospheric circulation type, especially for daily rainfall.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Badger, J., Frank, H., Hahmann, A.N., Giebel, G. (2014), Windclimate estimation based on mesoscale and microscale modelling: statistical-dynamical downscaling for wind energy applications, Journal of Applied Meteorology and Climatology 53, 1901–1919.
Bednorz, E. (2012), Atmospheric conditions of intense thaws in the Polish lowlands, Meteorologische Zeitschrift, Vol. 21, No. 1, 89–98, doi:10.1127/0941-2948/2012/0228.
Bednorz, E., Wibig, J. (2008), Snow depth in eastern Europe in relation to circulation patterns, Annals of Glaciology 48, 135–149, doi:10.3189/172756408784700815.
Bielec-Bąkowska, Z., Łupikasza, E. (2009), Frosty, freezing and severe freezing days and their synoptic implications in Małopolska, Southern Poland, 1951–2000, Bulletin of Geography—physical geography series, No. 1, 39–62.
Bissolli, P., Dittmann, E. (2001), The objective type classification of the German Weather Service and its possibilities of application to environmental and meteorological investigations, Meteorologische Zeitschrift, Vol. 10, No. 4, 253–260.
Czernecki, B. (2013), Creating wind field time-series over the Southern Baltic area using a dynamical downscaling approach, Meteorologische Zeitschrift Vol. 22, 587–593.
Emery, C., Tai, E., Greg, Y. (2001) Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes. Report to the Texas Natural Resource Conservation Commission, College Station, TX, USA, pp 235
Fuentes U, Heimann D (2000): An improved statistical-dynamical downscaling scheme and its application to the Alpine precipitation climatology. Theor. Appl. Climatol. 65: 119–135.
Gerstengarbe, F.W., Werner, P.C., Busold, W., Rüge, U., Wegener, K.O., Katalog der Grosswetterlagen Europas nach Paul Hess und Helmut Brezowsky 1881–1992 (Deustcher Wetterdienst, Offenbach am Main 1993).
Giorgi, F., Bates, T. (1989) The climatological skill of a regional model over complex terrain, Monthly Weather Review 117, 2325–2347.
Haylock, M.R., Hofsta, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., New, M. (2008), A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006, Journal of Geophysical Research 113, doi:10.1029/2008JD010201.
Huth, R., Beck, C., Philipp, A, Demuzere, M., Ustrnul, Z., Cahynova, M., Kysely, J., Tveito, O.E. (2008), Classifications of Atmospheric Circulation Patterns Recent Advances and Applications, Trends and Directions in Climate Research 1146, 105–152.
Jeziorska, J., Niedzielski, T. (2015), Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka River basin (SW Poland), Pure and Applied Geophysics (this issue).
Jiménez, P.A., Dudhia, J., González-Rouco, J.F., Montávez, J.P., Garcí-Bustamante, E., Navarro, J., Vilà-Guerau De Arellano, J., Muñoz-Roldán, A. (2013), An evaluation of WRF’s ability to reproduce the surface wind over complex terrain based on typical circulation patterns, Journal of Geophysical Research: Atmospheres 118, 7651–7669.
Kalkstein, L.S., Tan, G., Skindlov, J.A. (1987), An evaluation of three clustering procedures for use in synoptic climatological classification, Jour. Appl. Meteor., 26, 17–730.
Kryza, M., Wałaszek, K., Ojrzyńska, H., Szymanowski, M., Werner, M., Dore, A.J. (2016), High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation for the 1981–2010 Period, Pure and Applied Geophysics, doi:10.1007/s00024-016-1272-5
Kożuchowski, K., Wibig, J., Maheras, P. (1992), Connections between air-temperature and precipitation and the geopotential height of the 500-hpa-level in a meridional cross-section in Europe, International Journal of Climatology 12, 343–352.
Lityński, J. (1969), Liczbowa klasyfikacja typów cyrkulacji i typów pogody dla Polski, Prace PIHM, 97, 3–14.
Lo, J.C.F., Yang, Z.L., Pielke, R.A. (2008), Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model, Journal of Geophysical Research-Atmospheres 113.
Łupikasza, E. (2010), Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types, Physics and Chemistry of the Earth, 35(9), 448–455, doi:10.1016/j.pce.2009.11.012.
Mendez, M., Garcia-Diez, M., Fita, L., Fernandez, J., Mendez, F.J., Gutierrez, J.M. (2014), High-resolution sea wind hindcasts over the Mediterranean area, Climate Dynamics 42, 1857–1872.
Niedźwiedź, T., Sytuacje synoptyczne i ich wpływ na zróżnicowanie przestrzenne wybranych elementów klimatu w dorzeczu górnej Wisły (Rozpr. Hab. UJ 58, Kraków 1981).
Ojrzyńska, H., Circulation conditionings of air temperature spatial differentiation in morphologically diverse area with the use of an example of the Western Sudeten (pl. Cyrkulacyjne uwarunkowania przestrzennego rozkładu temperatury powietrza w terenie zróżnicowanym morfologicznie na przykładzie Sudetów), (Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego, 36, Wrocław 2015).
Osuchowska- Klein, B., Katalog typów cyrkulacji atmosferycznej (WKiŁ, Warszawa 1978).
Osuchowska-Klein, B., Związek miedzy temperatura a cyrkulacją atmosferyczną (Mat. Bad. IMGW, ser. Meteorologia 17, Warszawa 1992).
Piotrowski, P., Obiektywna metoda klasyfikacji cyrkulacji atmosferycznej dla Polski, (Acta Universitatis Lodziensis, Folia Geographica Physica, 10, Wyd. UŁ, Łódź 2009).
Reyers M, Pinto JG, Moemken J (2015): Statistical-dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projections. Int. J. Climatol. 35: 229–244.
Schwitalla, T., Bauer, H.-S., Wulfmeyer, V., Aoshima, F. (2011), High-resolution simulation over central Europe: assimilation experiments during COPS IOP 9c, Quarterly Journal of the Royal Meteorological Society 137: 156–175. doi:10.1002/qj.721.
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M., Huang, X.-Y., Wang, W., Powers, J.G. (2008), A description of the advanced research WRF version 3, Technical report TN-475 + STR, NCAR.
Szymanowski, M., Kryza, M., Spallek, W. (2013), Regressionbased air temperature spatial prediction models: an example from Poland, Meteorologische Zeitschrift 22, 557–585.
The NCAR Command Language (Version 6.1.2) [Software]. (2013). Boulder, Colorado: UCAR/NCAR/CISL/VETS. doi:10.5065/D6WD3XH5.
Twardosz, R., Niedźwiedź, T. (2001), Influence of synoptic situations on the precipitation in Krakow (Poland), International Journal of Climatology, Vol. 21, 4, 467–481, doi:10.1002/joc.620.
Twardosz, R., Niedźwiedź, T., Łupikasza, E. (211), The influence of atmospheric circulation on the type of precipitation (Kraków, southern Poland), Theoretical and Applied Climatology, 104, 233–250, doi:10.1007/s00704-010-0340-5.
Ustrnul, Z., Zmienność cyrkulacji atmosfery na półkuli północnej w XX wieku (Mat. Bad. IMGW, ser. Meteorologia, 27, Warszawa 1997).
Ustrnul, Z. (2000), Synoptic—climatic structure of the extreme air thermal phenomena in Poland, Geographia Polonica 73(2), 99–109.
Ustrnul, Z. (2006), Spatial differentiation of air temperature in Poland using circulation types and GIS, Int. J. Climatol., Vol. 26, 1529–1546.
Ustrnul, Z., Czekierda, D., Wypych, A. (2010), Extreme values of air temperature in Poland according to different atmospheric circulation classifications, Physics and Chemistry of the Earth, 35, 429–436.
Ustrnul, Z., Wypych, A., Winkler, J.A., Czekierda, D. (2014), Late spring freezes in Poland in relation to atmospheric circulation, Quaestiones Geographicae 33(3), 165–172.
Wibig, J., Związki wybranych elementów klimatu Polski z cyrkulacjąna powierzchni izobarycznej 500 hPa nad Europą i północnym Atlantykiem (Phd dissertation, Katedra Meteorologii i Klimatologii UŁ, Łódź 1991).
Wibig, J., Wpływ cyrkulacji atmosferycznej na rozkład przestrzenny anomalii temperatury i opadów w Europie (Rozprawy habilitacyjne UŁ, Wyd. UŁ, Łódź 2001).
Wibig, J., Jaczewski, A., Brzoska, B., Konca-Kędzierska, K., Pianko-Kluczyńska, K. (2014), How does the areal averaging influence the extremes? The context of gridded observation data sets, Meteorologische Zeitschrift, Vol. 23, No. 2, 181–187, doi:10.1127/0941-2948/2014/0470.
Woyciechowska, J., Ustrnul, Z. (2011), Fuzzy logic circulation types based on the Osuchowska-Klein classification system created for Poland, Theoretical and Applied Climatology 104, 543–549, doi:10.1007/s00704-010-0366-8.
Acknowledgments
This work was supported by the National Science Centre (NCN), Poland (Grants Nos. NN404 014 740 and UMO-2011/03/B/ST10/06226). Calculations have been carried out in the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), Grant No. 170. Meteorological measurements for this work were provided by the Institute of Meteorology and Water Management, National Research Institute.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Ojrzyńska, H., Kryza, M., Wałaszek, K., Szymanowski, M., Werner, M., Dore, A.J. (2018). High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 2: Model Performance with Respect to Automatically Derived Circulation Types. In: Niedzielski, T., Migała, K. (eds) Geoinformatics and Atmospheric Science. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66092-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-66092-9_5
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-66091-2
Online ISBN: 978-3-319-66092-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)