Abstract
In this work, we present the results of high-resolution dynamical downscaling of air temperature, relative humidity, wind speed and direction, for the area of Poland, with the Weather Research and Forecasting (WRF) model. The model is configured using three nested domains, with spatial resolution of 45 km × 45 km, 15 km × 15 km and 5 km × 5 km. The ERA-Interim database is used for boundary conditions. The results are evaluated by comparison with station measurements for the period 1981–2010. The model is capable of reproducing the main climatological features of the study area. The results are in very close agreement with the measurements, especially for the air temperature. For all four meteorological variables, the model performance captures seasonal and daily cycles. For the air temperature and winter season, the model underestimates the measurements. For summer, the model shows higher values, compared with the measurements. The opposite is the case for relative humidity. There is a strong diurnal pattern in mean error, which changes seasonally. The agreement with the measurements is worse for the seashore and mountain areas, which suggests that the 5 km × 5 km grid might still have an insufficient spatial resolution. There is no statistically significant temporal trend in the model performance. The larger year-to-year changes in the model performance, e.g. for the years 1982 and 2010 for the air temperature should therefore be linked with the natural variability of meteorological conditions.
Keywords
- Dynamical downscaling
- high resolution
- WRF model
- Poland
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Benestad, R.E., Hanssen-Bauer, I., Chen, D., Empirical-Statistical downscaling (World Scientific Publishing, Singapore 2008).
Czernecki, B. (2013), Creating wind field time-series over the Southern Baltic area using a dynamical downscaling approach, Meteorologische Zeitschrift 22, 587–593.
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van D Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, E.V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., Mcnally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.N. and Vitart, F. (2011), The Era-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society 137, 553–597.
Emery, C., Tai, E., Greg, Y., 2001. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes. Report to the Texas Natural Resource Conservation Commission, College Station, TX, USA, pp 235.
Fuentes U, Heimann D (2000): An improved statistical-dynamical downscaling scheme and its application to the Alpine precipitation climatology. Theor. Appl. Climatol. 65: 119–135.
Giorgi, F., and Bates, G.T. (1989), The climatological skill of a regional model over complex terrain, Monthly Weather Review 117, 2325–2347.
Giorgi F., Gutowski W.G., 2015, Regional dynamical downscaling and the CORDEX initiative, Annual Review of Environment and Resources, doi: 10.1146/annurev-environ-102014-021217.
Grell, G.A., and Freitas, S.R. (2013), A scale and aerosol aware stochastic convective parameterization for weather and air quality modelling, Atmos Chem Phys Discuss 13, 23845–23893.
Hernandez-Ceballos, M.A., Skjoth, C.A., Garcia-Mozo, H., Bolivar, J.P. and Galan C. (2014), Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula, International journal of biometeorology 58, 2031–2043.
Heikkila, U., Sandvik, A., Sorteberg, A. (2011), Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model, Climate Dynamics 37, 1551–1564.
Hong, S-Y. and Dudhia, J. (2012), Next generation numerical weather prediction: bridging parameterization, explicit clouds and large eddies, Bull Amer Meteor Soc 93, http://dx.doi.org/10.1175/2011BAMS3224.1.
Hong, S.Y. and Kanamitsu, M. (2014), Dynamical Downscaling: Fundamental Issues from a NWP Point of View and Recommendations, Asia-Pac. J. Atmos. Sci. 50(1), 83–104.
Hong, S.-Y., NOH, Y., and Dudhia, J. (2006), A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Monthly Weather Review 134(9), 2318–2341.
Huth, R., Misovsky, J., Stepanek, P., Belda, M., Farda, A., Chladova, Z. and Pisoft, P. (2015), Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature, Theoretical and Applied Climatology doi: 10.1007/s00704-014-1190-3.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D. (2008), Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical Research: Atmospheres 113(D13), D13103. doi:10.1029/2008JD009944.
Jeziorska, J. and Niedzielski, T. (2015), Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka River basin (SW Poland), Pure and Applied Geophysics (in revision, this issue).
Katragkou E., Garcia-Diez M., Vautard R., Sobolowski S., Zanis P., Alexandri G., Cardoso R.M., Colette A., Fernandex J., Gobiet A., Goergen K., Karacostas T., Knist S., Mayer S., Soares P.M.M., Pytharoulis I., Tegoulias I., Tsikerdekis A., Jacob D., 2015, Regional climate hindcast simulations with EURO-CORDEX: evaluation of a WRF multi-physics ensemble, Geosci. Model Dev. doi:10.5194/gmd-8-603-2015.
Kain, J. S. (2004), The Kain–Fritsch Convective Parameterization: An Update, Journal of Applied Meteorology 43(1), 170–181.
Kendall, M.G., (1970), Rank Correlation Methods. 4th Ed. (Griffin 1976).
Kiewra, D., Kryza, M. and Szymanowski, M. (2014), Influence of selected meteorological variables on the questing activity of Ixodes ricinus ticks in Lower Silesia, SW Poland, Journal of Vector Ecology 39, 138–145.
Kim, J.-W., Chang, J.-T., Baker, N.L., Wilks, D.S. and Gates, W.L. (1984), The statistical problem of climate inversion: determination of the relationship between local and large-scale climate, Monthly Weather Review 112, 2069–2077.
Kryza, M., Werner, M., Wałaszek, K. and Dore, A.J. (2013), Application and evaluation of the WRF model for high-resolution forecasting of rainfall—a case study of SW Poland, Meteorologische Zeitschrift 22, 595–601.
Kryza, M., Guzikowski, J., Werner, M., Szymanowski, M., Wałaszek, K. and Dore A.J. (2015), Performance of the WRF model and sensitivity to microphysics, planetary boundary layer and radiation schemes: a case study from Poland, Atmospheric Research (in revision).
Kotlarski S., Keuler K., Christensen O.B., Colette A., Deque M., Gobiet A., Goergen K., Jacob D., Luthi D., van Meigaard E., Nikulin G., Schar C., Teichmann C., Vautard R., Warrachsagi K., Wulfmeyer V., 2014, Regional climate modelling on European scales: a joint standard evaluation of the EUROCORDEX RCM ensamble, Geosci. Model Dev. doi:https://doi.org/10.5194/gmd-7-1297-2014.
Lorenc, H., Atlas Klimatu Polski, (IMGW 2005) (in Polish).
Mann, H.B. (1945), Nonparametric tests against trend, Econometrica 13, 245–259.
Marosz, M. and Jakusik, E. (2014), Downscaling of PDFs of daily air temperature on northern Poland: assessment of predictors, Meteorologische Zeitschrift 23, 167–174.
Marosz, M., Wójcik, R., Pilarski, M. and Miętus, M. (2013), Extreme daily precipitation totals in Poland during summer: the role of regional atmospheric circulation, Clim Res 56, 245–259.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.A. (1997), Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, Journal of Geophysical Research: Atmospheres 102(D14), 16663–16682.
Murphy, J. (1999), An evaluation of statistical and dynamical techniques for downscaling local climate, J. Climate 12, 2256–2284.
Ojrzyńska, H., Kryza, M., Wałaszek, K., Szymanowski, M., Werner, M. and Dore A.J. (2015), High resolution dynamical downscaling of ERA-Interim using the WRF regional climate model for the area of Poland. Part 2: model performance with respect to automatically derived circulation types, Pure and Applied Geophysics. doi:10.1007/s00024-016-1273-4.
Pavlik, D., Soehl, D., Pluntke, T., Mykhnovych, A. and Bernhofer, C. (2011), Dynamical downscaling of global climate projections for Eastern Europe with a horizontal resolution of 7 km, Environ Earth Scie 65, 1475–1482.
Pielke, R.A. Sr (2013), Comments on ‘‘The North American Regional Climate Change Assessment Program: Overview of Phase I results’’, Bull Amer Meteor Soc 1075–1077.
Reyers M, Pinto JG, Moemken J (2015): Statistical-dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projections. Int. J. Climatol. 35: 229–244.
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M., Huang, X.-Y., Wang, W. and Powers J.G., A description of the advanced research WRF version 3, (Technical report TN-475 + STR, NCAR 2008).
Shrestha, D.L, Robertson, D.E., Wang, Q.J., Pagano, T.C. and Hapuarachchi H.A.P. (2013), Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose, Hydrol Earth Syst Sci 17, 1913–1931.
Soares, P.M.M., Cardoso, R.M., Miranda, P.M.A., de Medeiros, J., Belo-Pereira, M., Espirito-Santo, F. (2012), WRF high resolution dynamical downscaling of ERA-Interim for Portugal, Climate Dynamics 39, 2497–2522.
Tao, W.-K., Simpson, J., and Mccumber, M. (1989), An Ice-Water Saturation Adjustment, Monthly Weather Review 117(1), 231–235.
Taylor, K.E. (2001), Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research 106, 7183–7192.
Wałaszek, K., Kryza, M. and Werner, M. (2014), Evaluation of the WRF meteorological model results during a high ozone episode in SW Poland—the role of model initial conditions, International Journal of Environment and Pollution 54, 193–202.
Wałaszek, K., Kryza, M. and Werner M. (2014), A Sensitivity Analysis of the WRF Model to Shortwave Radiation Schemes for Air Quality Purposes and Evaluation with Observational Data, Air Pollution Modeling and its Application XXIII, pp. 539–543.
Wałaszek, K., Kryza, M., Szymanowski, M., Werner, M. and Ojrzyńska H. (2015), Sensitivity study of cloud cover and ozone modeling to microphysics parameterization, Pure and Applied Geophysics (this issue).
Werner, M., Kryza, M., Dore, A.J., Błaś, M., Hallsworth, S., Vieno, M., Tang, Y.S. and Smith R.I. (2011), Modelling of marine base cation emissions, concentrations and deposition in the UK, Atmospheric Chemistry and Physics 11, 1023–1037.
Werner, M., Kryza, M., Skjøth A.C., Wałaszek, K., Dore A.J. and Ojrzyńska, H. (2015a), Aerosol-radiation feedback and PM10 air concentrations over Poland, Pure and Applied Geophysics (this issue).
Werner, M., Skjøth A.C., Kryza, M. and Dore, A.J. (2015b), Understanding emissions of ammonia from buildings and application of fertilizers: an example from Poland, Biogeosciences Discuss.
Acknowledgments
This work was supported by the National Science Centre (NCN), Poland (Grants No. N N404 014 740 and UMO-2011/03/B/ST10/06226). Calculations were carried out in the Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), Grant No. 170. Meteorological measurements for this work were provided by the Institute of Meteorology and Water Management, National Research Institute.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Kryza, M., Wałaszek, K., Ojrzyńska, H., Szymanowski, M., Werner, M., Dore, A.J. (2018). High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation for the 1981–2010 Period. In: Niedzielski, T., Migała, K. (eds) Geoinformatics and Atmospheric Science. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66092-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-66092-9_4
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-66091-2
Online ISBN: 978-3-319-66092-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)