Skip to main content

Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization

  • 878 Accesses

Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Cloud cover is a significant meteorological parameter influencing the amount of solar radiation reaching the ground surface, and therefore affecting the formation of photochemical pollutants, most of all tropospheric ozone (O3). Because cloud amount and type in meteorological models are resolved by microphysics schemes, adjusting this parameterization is a major factor determining the accuracy of the results. However, verification of cloud cover simulations based on surface data is difficult and yields significant errors. Current meteorological satellite programs provide many high-resolution cloud products, which can be used to verify numerical models. In this study, the Weather Research and Forecasting model (WRF) has been applied for the area of Poland for an episode of June 17th–July 4th, 2008, when high ground-level ozone concentrations were observed. Four simulations were performed, each with a different microphysics parameterization: Purdue Lin, Eta Ferrier, WRF Single-Moment 6-class, and Morrison Double-Moment scheme. The results were then evaluated based on cloud mask satellite images derived from SEVIRI data. Meteorological variables and O3 concentrations were also evaluated. The results show that the simulation using Morrison Double-Moment microphysics provides the most and Purdue Lin the least accurate information on cloud cover and surface meteorological variables for the selected high ozone episode. Those two configurations were used for WRF-Chem runs, which showed significantly higher O3 concentrations and better model-measurements agreement of the latter.

Keywords

  • Cloud mask
  • meteorological modeling
  • ozone
  • WRF
  • Poland
  • model evaluation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-66092-9_3
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-66092-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baró, R., Jiménez-Guerrero, P., Balzarini, A., Curci, G., Forkel, R., Grell, G., Hirtl, M., Honzak, L., Langerf, M., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., and Žabkar, R. (2015). Sensitivity analysis of the microphysics scheme in WRF-Chem contributions to AQMEII phase 2. Atmospheric Environment, 115, 620–629. doi:10.1016/j.atmosenv.2015.01.047.

  • Bretherton, C., Klinker, E., Betts, A., and Coakley, J. J. (1995). Comparison of ceilometer, satellite, and synoptic measurements of boundary-layer cloudiness and the ECMWF diagnostic cloud parameterization scheme during. Journal of the Atmospheric Sciences, 52(16), 2736–2751. Retrieved from http://ir.library.oregonstate.edu/xmlui/handle/1957/26417.

  • Crocker, R., and Mittermaier, M. (2013). Exploratory use of a satellite cloud mask to verify NWP models. Meteorological Applications, 20(2), 197–205. doi:10.1002/met.1384.

  • Derrien, M., Gléau, H. LE, and Raoul, M. (2010). The use of the high resolution visible in SAFNWC/MSG cloud mask. In Proceedings of the 2010 EUMETSAT Meteorological Satellite Conference, 20–24 September 2010, Co´rdoba, Spain (p. 57 pp.). Retrieved from http://hal.archives-ouvertes.fr/meteo-00604325/.

  • Fensholt, R., Anyamba, A., Huber, S., Proud, S. R., Tucker, C. J., Small, J., Pak, E., Rasmussen, M. O., Sandholt, I., and Shisanya, C. (2011). Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar Operational Environmental Satellite data for land surface monitoring in Africa. International Journal of Applied Earth Observation and Geoinformation 13(5), 721–729. doi:10.1016/j.jag.2011.05.009.

  • Forkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G., Jiménez-Guerrero, P., Hirtl, M., Honzak, L., Lorenz, C., IM, U., Pérez, J. L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., and Žabkar, R. (2015). Analysis of the WRF-Chem contributions to AQMEII phase 2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. Atmospheric Environment, 115, 630–645. doi:10.1016/j.atmosenv.2014.10.056.

  • Gilbert, G. K. (1884). Finley’s tornado predictions. American Meteorological Journal, 1, 166–172.

    Google Scholar 

  • Grasso, L., Lindsey, D. T., Sunny Lim, K.-S., Clark, A., Bikos, D., and Dembek, S. R. (2014). Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF-ARW Using Synthetic and Observed GOES-13 Imagery. Monthly Weather Review, 142(10), 3635–3650. doi:10.1175/MWR-D-14-00005.1.

  • Grell, G., Peckham, S., and Schmitz, R. (2005). Fully coupled ‘‘online’’ chemistry within the WRF model. Atmospheric Environment, 39, 6957–6975. doi:10.1016/j.atmosenv.2005.04.027.

  • Hong, S., and Lim, J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc, 42(2), 129–151. Retrieved from http://www.mmm.ucar.edu/wrf/users/docs/WSM6-hong_and_lim_JKMS.pdf.

  • Hong, S.-Y., Sunny Lim, K.-S., Kim, J.-H., Jade Lim, J.-O., and Dudhia, J. (2009). Sensitivity Study of Cloud-Resolving Convective Simulations with WRF Using Two Bulk Microphysical Parameterizations: Ice-Phase Microphysics versus Sedimentation Effects. Journal of Applied Meteorology and Climatology, 48(1), 61–76. doi:10.1175/2008JAMC1960.1.

  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13), D13103. doi:10.1029/2008JD009944.

  • Johnson, J. S., Cui, Z., Lee, L. A., Gosling, J. P., Blyth, A. M., and Carslaw, K. S. (2015). Evaluating uncertainty in convective cloud microphysics using statistical emulation. Journal of Advances in Modeling Earth Systems, 7(1), 162–187. doi:10.1002/2014MS000383.

  • Jolliffe, I. T., and Stephenson, D. B. (2003). Forecast verification: a practitioner’s guide in atmospheric science. John Wiley & Sons, Ltd.

    Google Scholar 

  • King, M. D., Menzel, W. P., Kaufman, Y. J., Tanré, D., Gao, B. C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41(2 PART 1), 442–456.

    Google Scholar 

  • Kryza, M., Wałaszek, K., Ojrzyńska, H., Szymanowski, M., Werner, M., and Dore, A. J. High resolution dynamical downscaling of ERA-Interim using the WRF regional climate model. Part 1: model configuration and statistical evaluation for the 1981-2010 period. Pure and Applied Geophysics (in revision).

    Google Scholar 

  • Krzyścin, J. W., Rajewska-Wie˛CH, B., and Jarosławski, J. (2013). The long-term variability of atmospheric ozone from the 50-yr observations carried out at Belsk (51.84ºN, 20.78ºE), Poland. Tellus B; Vol. 65.

    Google Scholar 

  • Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier Van Der Gon, H. A. C. (2014). TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys., 14(20), 10963–10976. doi:10.5194/acp-14-10963-2014.

  • Lin, Y.-L., Farley, R. D., and Orville, H. D. (1983). Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22(6), 1065–1092. doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

  • Liu, S. C., Mckeen, S. A., Hsie, E.-Y., Lin, X., Kelly, K. K., Bradshaw, J. D., Sandholm, S. T., Browell, E. V., Gregory, G. L., Sachse, G. W., Bandy, A. R., Thornton, D. C., Blake, D. R., Rowland, F. S., Newell, R., Heikes, B. G., Singh, H., and Talbot, R. W. (1996). Model study of tropospheric trace species distributions during PEM-West A. Journal of Geophysical Research, 101(D1), 2073. doi:10.1029/95JD02277.

  • Madronich, S. (1987). Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. Journal of Geophysical Research: Atmospheres, 92(D8), 9740–9752. doi:10.1029/JD092iD08p09740.

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663–16682. doi:10.1029/97JD00237.

  • Morrison, H., Thompson, G., and Tatarskii, V. (2009). Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of Oneand Two-Moment Schemes. Monthly Weather Review, 137(3), 991–1007. doi:10.1175/2008MWR2556.1.

  • Otkin, JA., and Greenwald, T. J. (2008). Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data. Monthly Weather Review, 136(6), 1957–1970. doi:10.1175/2007MWR2293.1.

  • Peterson, T. C., and Vose, R. S. (1997). An Overview of the Global Historical Climatology Network Temperature Database. Bulletin of the American Meteorological Society, 78(12), 2837–2849. doi:10.1175/1520-0477(1997)078<2837:AOOTGH>2.0.CO;2.

  • Qian, Y., Long, C. N., Wang, H., Comstock, J. M., Mcfarlane, S. A., and Xie, S. (2012). Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations. Atmospheric Chemistry and Physics, 12(4), 1785–1810. doi:10.5194/acp-12-1785-2012.

  • Rogers, E., Ek, M., Ferrier, B. S., Gayno, G., Lin, Y., Mitchell, K., Pondeca, M., Pyle, M., Wong, V. C. K., and WU, W. S. (2005). The NCEP North American Mesoscale Modeling System: Final Eta model/analysis changes and preliminary experiments using the WRF-NMM. In 21st Conference on Weather Analysis and Forecasting/17th Conference on Numerical Weather Prediction, Washington, D.C.

    Google Scholar 

  • Saide, P. E., Spak, S. N., Carmichael, G. R., Mena-Carrasco, M. A., Yang, Q., Howell, S., Leon, D. C., Snider, J. R., Bandy, A. R., Collett, J. L., Benedict, K. B., de Szoeke, S. P., Hawkins, L. N., Allen, G., Crawford, I., Crosier, J., and Springston, S. R. (2012). Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmospheric Chemistry and Physics, 12(6), 3045–3064. doi:10.5194/acp-12-3045-2012.

  • Schaefer, J. T. (1990). The Critical Success Index as an Indicator of Warning Skill. Weather and Forecasting, 5(4), 570–575.doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

  • Segele, Z. T., Leslie, L. M., and Lamb, P. J. (2013). Weather Research and Forecasting Model simulations of extended warmseason heavy precipitation episode over the US Southern Great Plains: data assimilation and microphysics sensitivity experiments. Tellus A; Vol 65 (2013).

    Google Scholar 

  • Skamarock, W., and Klemp, J. (2008). A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227, 3465–3485. doi:10.1016/j.jcp.2007.01.037.

  • Söhne, N., Chaboureau, J.-P., and Guichard, F. (2008). Verification of Cloud Cover Forecast with Satellite Observation over West Africa. Monthly Weather Review, 136(11), 4421–4434. doi:10.1175/2008MWR2432.1.

  • Staszewski, T., Kubiesa, P., and Łukasik, W. (2012). Response of spruce stands in national parks of southern Poland to air pollution in 1998–2005. European Journal of Forest Research, 131(4), 1163–1173. doi:10.1007/s10342-011-0587-0.

  • Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W. (2003). Effect of clouds on photolysis and oxidants in the troposphere. Journal of Geophysical Research: Atmospheres, 108(D20), 4642. doi:10.1029/2003JD003659.

  • Tuinder, O. N. E., de Winter-Sorkina, R., and Builtjes, P. J. H. (2004). Retrieval methods of effective cloud cover from the GOME instrument: an intercomparison. Atmospheric Chemistry and Physics, 4(1), 255–273. doi:10.5194/acp-4-255-2004.

  • Van Lier-Walqui, M., Vukicevic, T., and Posselt, D. J. (2012). Quantification of Cloud Microphysical Parameterization Uncertainty Using Radar Reflectivity. Monthly Weather Review, 140(11), 3442–3466. doi:10.1175/MWR-D-11-00216.1.

  • Vose, R. S., Schmoyer, R. L., Steurer, P. M., Peterson, T. C., Heim, R., Karl, T. R., and Eischeid, J. K. (1992). The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data. Environmental Sciences Division Publication no. 3912, doi: 10.3334/CDIAC/cli.ndp041.

  • Wernli, H., Paulat, M., Hagen, M., and Frei, C. (2008). Sal—A Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts. Monthly Weather Review, 136(11), 4470–4487. doi:10.1175/2008MWR2415.1.

  • Wild, O., Zhu, X., and Prather, M. (2000). Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models. Journal of Atmospheric Chemistry, 37(3), 245–282. doi:10.1023/A:1006415919030.

  • Willmott, C. J. (1981). On the Validation of Models. Physical Geography, 2(2), 184–194.

    Google Scholar 

  • Wilks, D. S. (2006). Statistical methods in the atmospheric sciences., 704 p., Elsevier Inc., ISBN 9780123850225.

    Google Scholar 

  • World Meteorological Organization. (2008). Guide to Meteorological Instruments and Methods of Observation. WMO No. 8.

    Google Scholar 

  • Zhang, Y., Chen, Y., Sarwar, G., and Schere, K. (2012). Impact of gas-phase mechanisms on Weather Research Forecasting Model with Chemistry (WRF/Chem) predictions: Mechanism implementation and comparative evaluation. Journal of Geophysical Research, 117(D1), D01301. doi:10.1029/2011JD015775.

  • Zingerle, C., and Nurmi, P. (2008). Monitoring and verifying cloud forecasts originating from operational numerical models, Meteorological Applications, 15(3), 325–330. doi:10.1002/met.73.

Download references

Acknowledgments

The study was supported by the Polish National Science Centre project no. UMO-2013/09/B/ST10/00594. The project was financed with means of the European Union under the Financial Instrument LIFE + and co-financed by the National Fund of Environmental Protection and Water Management. Calculations were carried out in the Wrocław Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), Grant No. 170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga Wałaszek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wałaszek, K., Kryza, M., Szymanowski, M., Werner, M., Ojrzyńska, H. (2018). Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization. In: Niedzielski, T., Migała, K. (eds) Geoinformatics and Atmospheric Science. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66092-9_3

Download citation