Skip to main content

Geospatial Predictive Modelling for Climate Mapping of Selected Severe Weather Phenomena Over Poland: A Methodological Approach

  • Chapter
  • First Online:
Geoinformatics and Atmospheric Science

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 929 Accesses

Abstract

The main purpose of the study is to introduce methods for mapping the spatial distribution of the occurrence of selected atmospheric phenomena (thunderstorms, fog, glaze and rime) over Poland from 1966 to 2010 (45 years). Limited in situ observations as well the discontinuous and location-dependent nature of these phenomena make traditional interpolation inappropriate. Spatially continuous maps were created with the use of geospatial predictive modelling techniques. For each given phenomenon, an algorithm identifying its favourable meteorological and environmental conditions was created on the basis of observations recorded at 61 weather stations in Poland. Annual frequency maps presenting the probability of a day with a thunderstorm, fog, glaze or rime were created with the use of a modelled, gridded dataset by implementing predefined algorithms. Relevant explanatory variables were derived from NCEP/NCAR reanalysis and downscaled with the use of a Regional Climate Model. The resulting maps of favourable meteorological conditions were found to be valuable and representative on the country scale but at different correlation (r) strength against in situ data (from r = 0.84 for thunderstorms to r = 0.15 for fog). A weak correlation between gridded estimates of fog occurrence and observations data indicated the very local nature of this phenomenon. For this reason, additional environmental predictors of fog occurrence were also examined. Topographic parameters derived from the SRTM elevation model and reclassified CORINE Land Cover data were used as the external, explanatory variables for the multiple linear regression kriging used to obtain the final map. The regression model explained 89 % of annual frequency of fog variability in the study area. Regression residuals were interpolated via simple kriging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahti, K., and Makkonen, L. (1982), Observations on rime formation in relation to routinely measured meteorological parameters, Geophysica 19, 75–85.

    Google Scholar 

  • Avotniece, Z., Klavins, M., and Lizuma, L. (2015), A Fog climatology in Latvia, Theor. Appl. Climatol 122(1), 97–109.

    Google Scholar 

  • Benavides, R., Montes, F., Rubio, A., and Osoro, K. (2007), Geostatistical modelling of air temperature in a mountainous region of Northern Spain, Agr. Forest Meteorol. 146, 173–188.

    Google Scholar 

  • Bendix, J. (2002), A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas, Atmos. Res. 64, 3–18.

    Google Scholar 

  • Berry, J.K., Predictive Modeling, In Analyzing Geo-Spatial Resource Data—A hands-on case study in spatial analysis and data mining (ed. Berry J.K.) (W.M. Keck Scholar in Geosciences, University of Denver, Denver, Colorado 2005) chapter 13, pp 13.1–13.12.

    Google Scholar 

  • Blanchet, J., and Lehning, M. (2010), Mapping snow depth return levels: smooth spatial modeling versus station interpolation, Hydrol. Earth Syst. Sci. 14, 2527–2544.

    Google Scholar 

  • Bossard, M., Feranec, J., and Otahel, J. (2000), CORINE land cover technical guide—Addendum 2000, http://www.eea.europa.eu, accessed in Jan. 2015.

  • Brown, D.P., and Comrie, A.C. (2002), Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA, Clim. Res. 22, 115–128.

    Google Scholar 

  • Brunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1996), Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity, Geographical Analysis 28, 281–298. doi:10.1111/j.1538-4632.1996.tb00936.x.

  • Cermak, J., Eastman, R.M., Bendix, J., and Warren, S.G. (2009), European climatology of fog and low stratus based on geostationary satellite observations, Q. J. R. Meteorol. Soc. 135, 2125–2130.

    Google Scholar 

  • Chapman, L., and Thornes, J.E. (2003), The use of geographical information systems in climatology and meteorology Prog. Phys. Geogr. 27(3), 313–330.

    Google Scholar 

  • Diem, J.E., and Comrie, A.C (2002), Predictive mapping of air pollution involving sparse spatial observations, Eniron. Pollution 119, 99–117.

    Google Scholar 

  • Di Piazza, A, Lo Conti, F., Noto, L.V., Viola, F., and La Loggia, G. (2011), Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy, Int. J. Appl. Earth Obs. Geoinf. 13, 396–408.

    Google Scholar 

  • Dobesch, H., Dumolard, P., and Dyras, I. (eds.), Spatial Interpolation for Climate Data : the Use of GIS in Climatology and Meteorology (ISTE, London 2007).

    Google Scholar 

  • Elguindi, N., Bi, X., Giorgi, F., Nagarajan, B., Pal, J., Solmon, F., Rauscher, S., Zakey, A., and Giuliani, G. (2011), Climatic Model RegCM User Manual-Version 4.1. Trieste, Italy.

    Google Scholar 

  • Fotheringham, A.S., Brunsdon, C., and Charlton, M.E. (1998), Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis, Environment and Planning A, 30(11), 1905–1927.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2002), Geographically weighted regression: the analysis of spatially varying relationships, Wiley, ss. 282.

    Google Scholar 

  • Fotheringham, A. S. (2010), Geographically weighted regression. In: Warf, B. (Ed.), Encyclopedia of geography, SAGE Publications, Thousand Oaks, 1225-1232.

    Google Scholar 

  • Franklin, J. (1995), Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients, Prog. Phys. Geogr. 19(4), 474–499, doi:10.1177/030913339501900403.

  • Gallant, J.C., and Wilson, J.P. (2000), Primary topographic attributes. In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications, Wiley, New York, 51–85.

    Google Scholar 

  • Gao, J., and Li, S. (2011), Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using Geographically Weighted Regression, Applied Geography 31 (1), 292–302.

    Google Scholar 

  • Geisser, S. (1975), The predictive sample reuse method with applications, J. Amer. Statist. Assoc. 70, 320–328.

    Google Scholar 

  • Giorgi, F., and Anyah, R.O. (2012), The road towards RegCM4, Clim Res 52, 3–6.

    Google Scholar 

  • Hartkamp, A.D., De Beurs, K., Stein, A., and White, J.W., Interpolation techniques for climate variables, NRG-GIS Series 99-01 (CIMMYT, Mexico D.F., 1999).

    Google Scholar 

  • Hengl, T. (2007), A practical guide to geostatistical mapping of environmental variables. EUR 22904 EN. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Hengl, T. (2009), A practical guide to geostatistical mapping, 2nd ed. Amsterdam: University of Amsterdam.

    Google Scholar 

  • Hengl, T., Heuvelink, G.B.M., and Stein, A. (2004), A generic framework for spatial prediction of soil variables based on regression-kriging, Geoderma 120 (1–2), 75–93.

    Google Scholar 

  • Heuvelink, G.B.M., and Griffith, D.A. (2010), Space–Time Geostatistics for Geography: A Case Study of Radiation Monitoring Across Parts of Germany, Geogr. Anal. 42, 161–179.

    Google Scholar 

  • Isaaks, E.H., and Srivastava, R.M. (1989), An introduction to applied geostatistics, Oxford Univ. Press, New York.

    Google Scholar 

  • Jacobs, W., Nietosvaara, V., Bott, A., Bendix, J., Cermak, J., Silas, M., and Gultepe, I. (2007), Short range forecasting methods of fog visibility and low clouds, Earth System Science and Environmental Management Final Rep. on COST-722 Action.

    Google Scholar 

  • Jarvis, A., Reuter, H.I., Nelson, A., and Guevara, E. (2008), Hole-filled SRTM for the globe Version 4, available on-line from the CGIAR-CSI SRTM: http://srtm.csi.cgiar.org, accessed in Jan. 2015.

  • Jenness, J. (2006), Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a., Jenness Enterprises, available on-line: http://www.jennessent.com/arcview/tpi.htm, accessed in Jan. 2015.

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. (1996), The NCEP/NCAR 40-year reanalysis project, Bull Amer Meteor Soc 77, 437–470.

    Google Scholar 

  • Keller, D. L., and Kuchera, E.L. (2004), Model-output post-processor algorithm development with interactive visualization software, Natl. Wea. Dig. 28, 47–53.

    Google Scholar 

  • Kistler, R., Kalnay, E., Collins, W., Saha, G., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M. (2001), The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, Bull Amer Meteor Soc 82, 247–267.

    Google Scholar 

  • Kryza, M., Szymanowski, M., Migała, K., and Pietras, M. (2010), Spatial information on total solar radiation: Application and evaluation of the r.sun model for the Wedel Jarlsberg Land, Svalbard, Polish Polar Research 31, 17–32.

    Google Scholar 

  • Li, J., and Heap, A.D., A review of spatial interpolation methods for environmental scientists, Geoscience Australia Records 23, (Australian Government, Canberra 2008).

    Google Scholar 

  • López-Moreno, J.I., and Nogués-Bravo, D. (2005), A generalized additive model for modelling the spatial distribution of snowpack in the Spanish Pyrenees, Hydrol. Process 19, 3167–3176.

    Google Scholar 

  • López-Moreno, J.I., and Nogués Bravo, D. (2006), Interpolating snow depth data: a comparison of methods, Hydrol. Process. 20(10), 2217–232.

    Google Scholar 

  • López Moreno, J.I., and Vicente-Serrano, S.M. (2007), Mapping snowpack distribution over large areas using GIS and interpolation techniques, Clim. Res. 33, 257–270.

    Google Scholar 

  • Lorenc, A. C. (1986), Analysis methods for numerical weather prediction. Q.J.R. Meteorol. Soc. 112, 1177–1194.

    Google Scholar 

  • Lorenc, H. (ed.), Climatic atlas of Poland, (Institute of Meteorology and Water Management, Warsaw, 2005) (in Polish).

    Google Scholar 

  • Martínez-Cob, A. (1996), Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain, J. Hydrol. 174, 19–35.

    Google Scholar 

  • Musial, J.P., Hüsler, F., Sütterlin, M., Neuhaus, C., and Wunderle, S. (2014) Daytime Low Stratiform Cloud Detection on AVHRR Imagery, Remote Sens. 6, 5124–5150.

    Google Scholar 

  • Ninyerola, M., Pons, X., and Roure, J.M. (2000), A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques International Journal of Climatology 20: 1823–1841.

    Google Scholar 

  • Ninyerola, M., Pons, X., and Roure, J.M. (2007), Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology 89: 195–209.

    Google Scholar 

  • Ninyerola, M., Pons, X., and Roure, J.M. (2007), Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. International Journal of Climatology 27: 1231–1242.

    Google Scholar 

  • Ruiz-Arias, J.A., Pozo-Vázquez, D., Santos-Alamillos, F.J., Lara-Fanego, and Tovar-Pescador, V. (2011), A topographic geostatistical approach for mapping monthly mean values of daily global solar radiation: A case study in southern Spain, Agr. Forest Meteorol. 151(12), 1812–1822.

    Google Scholar 

  • Sachweh, M., and Koepke, P. (1997), Fog dynamics in an urbanized area, Theoretical and Applied Climatology 58(1), 87–93.

    Google Scholar 

  • Shekhar, S., Zhang, P., and Huang, Y. (2005), Spatial Data Mining [in:] Maimon, O. and Rokach, L. (eds.) The data mining and knowledge discovery handbook, Springer 2005, chapter 39, 833–852.

    Google Scholar 

  • Shirin Manesh, S.S., Ahani, H., and Rezaeian-Zadeh, M. (2013) ANN-based mapping of monthly reference crop evapotranspiration by using altitude, latitude and longitude data in Fars province, Iran, Environ. Dev. Sustain, doi: 10.1007/s10668-013-9465-x.

  • Sluiter, R., Interpolation methods for climate data. Literature review, KNMI Intern Raport (R&D Information and Observation Technology, De Bilt 2009).

    Google Scholar 

  • Szymanowski, M., Kryza, M., and Spallek, W. (2012), Air temperature atlas for Poland: the methodical approach. Rozprawy Naukowe Instytutu Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego 26, Uniwersytet Wrocławski, Wrocław (in Polish, English summary).

    Google Scholar 

  • Szymanowski, M., Kryza, M., and Spallek W. (2013), Regression-based air temperature spatial prediction models: an example from Poland, Meteoroloische Zeitschrift 22(5), 577–585.

    Google Scholar 

  • Thorne, J., Boynton, R., Flint, L., Flint, A., and Le, T.N. (2012), Development and Application of Downscaled Hydroclimatic Predictor Variables for Use in Climate Vulnerability and Assessment Studies, California Energy Commission, Publication number: CEC-500-2011-010.

    Google Scholar 

  • Tveito, O.E., Wegehenkel, M., Van der Wel, F., and Dobesch, H., The Use of Geographic Information Systems in Climatology and Meteorology—Final Report COST Action 719 (Official Publications of the European Communities, Luxembourg 2008).

    Google Scholar 

  • Ustrnul, Z., and Czekierda, D. (2005), Application of GIS for the development of climatological air temperature maps: an example from Poland, Meteorol. Appl. 12, 43–50.

    Google Scholar 

  • Ustrnul, Z., Wypych, A., Henek, E., Czekierda, D., Walawender, J., Kubacka, D., Pyrc, R., and Czernecki, B., Meteorological hazard atlas of Poland (Institute of Meteorology and Water Management and ATTYKA, Krakow, 2014).

    Google Scholar 

  • Ustrnul, Z., Wypych, A., Henek, E., Maciejewski, M., and Bochenek, B. (2015), Climatologically based warning system against meteorological hazards and weather extremes—the example for Poland, Natural Hazards, doi:10.1007/s11069-015-1673-2.

  • Vicente-Serrano, S.M., Lanjeri, S., and López-Moreno, J.I. (2007), Comparison of different procedures to map reference evapotranspiration using geographical information systems and regression-based techniques, Int. J. Climatol. 27, 1103–1118.

    Google Scholar 

  • Vicente-Serrano, S.M., López-Moreno, J.I., Vega-Rodriguez, M.I., Beguería, S., and Cuadrat, J.M. (2010), Comparison of regression techniques for mapping fog frequency: application to the Aragon region (northeast Spain), Int. J. Climatol. 30, 935–945.

    Google Scholar 

  • Vicente-Serrano, S.M., Saz, M.A., and Cuadrat, J.M. (2003), Comparative analysis of interpolation methods in the middle Ebro valley (Spain): application to annual precipitation and temperature, Clim. Res. 24, 161–180.

    Google Scholar 

  • Wagner, P.D., Fiener, P., Wilken, F., Kumar, S., and Schneider, K. (2012), Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, J. Hydrol. 464–465, 388–400.

    Google Scholar 

  • Walawender, E., Kielar, R., and Ustrnul, Z. (2015), Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach, Theoretical and Applied Climatology, doi:10.1007/s00704-015-1620-x.

  • Wang, C., Yue, T., and Fan, Z. (2014), Solar Radiation Climatology Calculation in China, Journal of Resources and Ecology 5(2), 132–138.

    Google Scholar 

  • Wilby, R.L., and Wigley, T.M.L. (1997), Downscaling general circulation model output: a review of methods and limitations. Progr in Phys Geogr, 21, 530–548.

    Google Scholar 

  • Willmott, C.J., and Matsuura, K. (2006), On the use of dimensioned measures of error to evaluate the performance of spatial interpolators, International Journal of GIS 20, 89–102.

    Google Scholar 

  • World Meteorological Organization (2004), Establish Guidelines for implementation of a demonstration project of severe weather forecasting (proposal), Workshop On Severe and Extreme Events Forecasting (Toulouse, 26–29 October 2004). Available online at: http://www.wmo.int/pages/prog/www/DPS/Meetings/Wshop-SEEF_Toulouse2004/Doc3-1(1).doc (Accessed on: March 2015).

  • World Meteorological Organization (2008), Guide to Meteorological Instruments and Methods of Observation, 7th ed., WMO-No. 8.

    Google Scholar 

  • World Meteorological Organization (2011), Guide to climatological practices, WMO no.100, third edition, Available online at: http://www.wmo.int/pages/prog/wcp/ccl/guide/documents/WMO_100_en.pdf (Accessed on: March 2015).

  • Wypych, A., Ustrnul, Z., and Henek, E. (2014), Meteorological Hazards—Visualization System for National Protection Against Extreme Hazards for Poland, Meteorol. Hydrol. and Water Manag. 2(1), 37–42.

    Google Scholar 

  • Yuan, M.B., Butternfield M., Gahegan M., and Miller H., Geospatial data mining and knowledge discovery, In Research Challenges in Geographic Information Science (eds. McMaster R. and Usery) (John Wiley & Sons, CRC Press, Boca Raton, FL. 2005), chapter 14, pp. 365–388.

    Google Scholar 

Online data sources

Download references

Acknowledgments

This work was performed as a part of the ISOK project (IT system for country protection against extreme hazards; POIG.07.01.00-00-025/09) which was co-financed by the European Fund of Regional Development under the Operational Programme Innovative Economy and the Polish Government. Authors would like to thank Łukasz Harasimowicz, Rafał Kielar, Tomasz Knopik, Szymon Pysz and Witold Wiążewski from the Institute of Meteorology and Water Management–National Research Institute whose previous work on fog, glaze, rime and thunderstorm detection algorithms in the project has contributed to this article. The authors would like to also thank the anonymous reviewers for their helpful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Walawender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Walawender, E., Walawender, J.P., Ustrnul, Z. (2018). Geospatial Predictive Modelling for Climate Mapping of Selected Severe Weather Phenomena Over Poland: A Methodological Approach. In: Niedzielski, T., Migała, K. (eds) Geoinformatics and Atmospheric Science. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66092-9_10

Download citation

Publish with us

Policies and ethics