Skip to main content

The Application of Omics Data to the Development of AOPs

Abstract

Omics approaches offer potential for use in chemical hazard and risk assessments when applied as part of a systems toxicology or integrative approach, and when considered in the context of the adverse outcome pathway (AOP) framework. Omics data provide individual snapshots of gene expression, protein expression and metabolite activity. When integrated, these individual snapshots yield deep biological insights. Omics can provide mechanistic information about the effects of chemicals and can help decipher toxicity mechanisms and modes of action. Omics data have the potential to increase confidence in species extrapolation, and can be used to identify biomarkers of exposure and toxicity. Although omics have been used for more than a decade, acceptance of omics data in regulated applications has been slow. The toxicology community is grappling with how to make use of omics data in a regulatory framework, and how to use AOPs to drive regulatory decision-making processes. In this chapter, an overview of major omics is provided that includes recent advances and describes the potential application of omics data to the development of AOPS while defining some of the challenges associated with the broader acceptance of omics within a regulatory toxicology framework.

Keywords

  • Adverse Outcome Pathway (AOPs)
  • Omics Data
  • Someren MA
  • Toxicology Community
  • Pharmacology

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4

References

  • Afshari CA, Hamadeh HK, Bushel PR (2011) The evolution of bioinformatics in toxicology: advancing toxicogenomics. Toxicol Sci 120:S225–S237

    CrossRef  PubMed  CAS  Google Scholar 

  • Altelaar AFM, Munoz J, Heck AJR (2013) Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet 14:35–48

    CrossRef  PubMed  CAS  Google Scholar 

  • Andersen ME, Clewell HJ (III), Carmichael PL et al (2011) Toxicity testing in the 21st century: a vision and a strategy. Food for thought… can case study approaches speed implementation of the NRC report, ALTEX, 28, pp 175–183

    Google Scholar 

  • Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    CrossRef  PubMed  CAS  Google Scholar 

  • Attene-Ramos MS, Miller N, Huang R et al (2013) The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discov Today 18:716–723

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker M (2011) Metabolomics: from small molecules to big ideas. Nat Methods 8:117–121

    CrossRef  CAS  Google Scholar 

  • Bhattacharya S, Zhang Q, Carmichael PL et al (2011) Toxicity testing in the 21st century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6(6):e20887

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouhifd M, Hartung T, Hogberg HT et al (2013) Review: toxicometabolomics. J Appl Toxicol 33:1365–1383

    CrossRef  PubMed  CAS  Google Scholar 

  • Bouhifd M, Hogberg H, Kleensang A et al (2014) Mapping the human toxome by systems toxicology. BCPT 115:24–31

    CAS  Google Scholar 

  • Chen G, Pramanik BN (2009) Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today 14:465–471

    CrossRef  PubMed  CAS  Google Scholar 

  • Chen M, Zhang M, Borlak J et al (2012) A decade of Toxicogenomics research and its contribution to toxicological science. Toxicol Sci 130:217–228

    CrossRef  PubMed  CAS  Google Scholar 

  • Chuang H-Y, Hofree M, Ideker T (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Collings FB, Vaidya VS (2008) Novel technologies for the discovery and quantitation of biomarkers of toxicity. Toxicology 245:167–174

    CrossRef  PubMed  CAS  Google Scholar 

  • Collins FS, Morgan M, Patrinos A (2003) The human genome project: lessons from large-scale biology. Science 300:286–290

    CrossRef  PubMed  CAS  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR. Cas systems. Science 339:819–823

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Connon RE, Geist J, Werner I (2012) Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12:12741–12771

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Cote I, Anastas PT, Birnbaum LS et al (2012) Advancing the next generation of health risk assessment. Environ Health Perspect 120:1499–1502

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Paules RS (2010) Use of transcriptomics in understanding mechanisms of drug-induced toxicity. Pharmacogenomics 11:573–585

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Dix DJ, Houck KA, Martin MT et al (2007) The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol Sci 95:5–12

    CrossRef  PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotech 28:710–721

    CrossRef  CAS  Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 24:285–294

    CrossRef  CAS  Google Scholar 

  • European Food Safety Authority (2014) Modern methodologies and tools for human hazard assessment of chemicals. EFSA J 12:3638, 87 pp. doi:10.2903/j.efsa.2014.3638

    CrossRef  CAS  Google Scholar 

  • Fasani RA, Livi CB, Choudhury DR et al (2016) The human toxome collaboratorium: a shared environment for multi-omic computational collaboration within a consortium. Technology Report ARTICLE. Front Pharmacol 6:322. https://doi.org/10.3389/fphar.2015.00322

  • Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99:90–100

    CrossRef  PubMed  CAS  Google Scholar 

  • Fukishima A, Kanaya S, Nishida K (2014) Integrated network analysis and effective tools in plant systems biology. Plant Syst Synth Biol 5:598

    Google Scholar 

  • Garcia-Reyero N, Lavelle CM, Escalon BL et al (2011) Behavioral and genomic impacts of a wastewater effluent on the fathead minnow. Aquat Toxicol 101:38–48

    CrossRef  PubMed  CAS  Google Scholar 

  • Gerecke DR, Chen M, Isukapalli SS et al (2009) Differential gene expression profiling of mouse skin after sulfur mustard exposure: extended time response and inhibitor effect. Toxicol Appl Pharmacol 234:156–165

    CrossRef  PubMed  CAS  Google Scholar 

  • Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex disease annual rev. Genetics 45:203–226

    CrossRef  CAS  Google Scholar 

  • Go EP (2010) Database resources in metabolomics: an overview. J Neuroimmune Pharmacol 5:18–30

    CrossRef  PubMed  Google Scholar 

  • Green ED, Guyer MS, The National Human Genome Research Institute (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470:203–213

    CrossRef  CAS  Google Scholar 

  • Groh KJ, Carvalho RN, Chipman JK et al (2015) Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere 120:764–777

    CrossRef  PubMed  CAS  Google Scholar 

  • Hartung T, McBride M (2011) Food for thought…on mapping the human toxome. ALTEX 28:83–93

    CrossRef  PubMed  Google Scholar 

  • Hege Harrill A, Rusyn I (2008) Systems biology and functional genomics approaches for the identification of cellular responses to drug toxicity. Expert Opin Drug Metab Toxicol 4:1379–1389

    CrossRef  Google Scholar 

  • Heinloth AN, Irwin RD, Boorman GA et al (2004) Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicol Sci 80:193–202

    CrossRef  PubMed  CAS  Google Scholar 

  • Ishino Y, Shinagawa H, Makino K et al (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CrossRef  PubMed  CAS  Google Scholar 

  • Judson R (2010) Public databases supporting computational toxicology. J Toxicol Environ Health B Crit Rev 13:218–231

    CrossRef  PubMed  CAS  Google Scholar 

  • Judson R, Richard A, Dix D et al (2008) ACToR–aggregated computational toxicology resource. Toxicol Appl Pharmacol 233:7–13

    CrossRef  PubMed  CAS  Google Scholar 

  • Judson RS, Houck KA, Kavlock RJ et al (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Env Health Perspect 118:485–492

    CrossRef  CAS  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    CrossRef  PubMed  CAS  Google Scholar 

  • Lindon JC, Keun HC, Ebbels TM et al (2005) The consortium for metabonomic toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6:691–699

    CrossRef  PubMed  CAS  Google Scholar 

  • Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    CrossRef  PubMed  CAS  Google Scholar 

  • Martin MT, Dix DJ, Judson RS et al (2010) Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program. Chem Res Toxicol 23:578–590

    CrossRef  PubMed  CAS  Google Scholar 

  • Marx V (2013) Targeted proteomics. Nat Methods 10:19–22

    CrossRef  PubMed  CAS  Google Scholar 

  • McBurney RN, Hines WM, Von Tungeln LS et al (2009) The liver toxicity biomarker study: phase 1 design and preliminary results. Toxicol Pathol 37:52–64

    CrossRef  PubMed  CAS  Google Scholar 

  • McBurney RN, Hines WM, Von Tungeln LS et al (2012) The liver toxicity biomarker study: phase 1 markers for the effects of tolcapone or entacapone. Toxicol Pathol 40:951–964

    CrossRef  PubMed  CAS  Google Scholar 

  • McMullen PD, Bhattacharya S, Woods CG et al (2014) A map of the PPAR-α transcription regulatory network for primary human hepatocytes. Chem Biol Interact 209:14–24

    CrossRef  PubMed  CAS  Google Scholar 

  • McMullen PD, Bhattacharya S, Woods CG et al (2016) PPARα signaling in liver: exploring the biological basis of human-rat differences in phenotypic responses to hepatic nuclear receptor activation. Toxicol Sci (in press)

    Google Scholar 

  • Mehinto AC, Martyniuk CJ, Spade DJ et al (2012) Applications of next-generation sequencing in fish ecotoxicogenomics. Front Genet 3:1–10

    CrossRef  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    CrossRef  PubMed  CAS  Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academies Press, Washington, DC

    Google Scholar 

  • OECD, Organisation for Economic Co-operation and Development (2013a) Guidance document on developing and assessing adverse outcome pathways. Series on testing and assessment, No. 184. Paris, ENV/JM/MONO(2013)6

    Google Scholar 

  • OECD, Organisation for Economic Co-operation and Development (2013b) Users’ handbook supplement to the guidance document for developing and assessing AOPs. Available at https://aopkb.org/common/AOP_Handbook.pdf

  • Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52:413–435

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–270

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajasundaram D, Selbig J (2016) More effect-more results: recent advances in integrative “omics” data analysis. Curr Opin Plant Biol 30:57–61

    CrossRef  PubMed  CAS  Google Scholar 

  • Ramirez T, Daneshian M, Kamp H et al (2013) t4 report: metabolomics in toxicology an preclinical research. ALTEX 30:209–225

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L (2011) Next-generation sequencing: a revolutionary tool for toxicogenomics. Gen Appl Syst Toxicol. Published Online: 15 Sep 2011. doi: https://doi.org/10.1002/9780470744307.gat232

  • Suter L, Babiss LE, Wheeldon EB (2004) Toxicogenomics in predictive toxicology in drug development. Chem Biol 11:161–171

    CrossRef  PubMed  CAS  Google Scholar 

  • Swiech L, Heidenreich M, Banerjee A et al (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:99–103

    CrossRef  CAS  Google Scholar 

  • Thomas RS, Philbert MA, Auerbach SS et al (2013) Incorporating new technologies into toxicity testing and risk assessment: moving from 21st century vision to a data-driven framework. Toxicol Sci 136:4–18

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Titz B, Elamin A, Martin F et al (2014) Proteomics for systems toxicology. Comput Struct Biotechnol J 11:73–90

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70:629–640

    CrossRef  PubMed  Google Scholar 

  • Tralau T, Luch A (2015) Moving from rats to cellular omics in regulatory toxicology: great challenges toward sustainability or “up shit creek without a paddle”? Arch Toxicol 89:819–821

    CrossRef  PubMed  CAS  Google Scholar 

  • US-EPA (U.S. Environmental Protection Agency) (2013) Next generation risk assessment: incorporation of recent advances in molecular, computational, and systems biology. Available online http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=259936#Download

  • Van Aggelen G, Anklet GT, Baldwin WS et al (2010) Integrating omic technologies into aquatic ecological risk assessment and environmental monitoring: hurdles, achievements, and future outlook. Environ Health Perspect 118:1–5

    PubMed  Google Scholar 

  • van Ravenzwaay B, Cunha GC, Leibold E et al (2007) The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett 172:21–28

    CrossRef  PubMed  CAS  Google Scholar 

  • van Ravenzwaay B, Herold M, Kamp H et al (2012) Metabolomics: a tool for early detection of toxicological effects and an opportunity for biology based grouping of chemicals-from QSAR to QBAR. Mutat Res 746:144–150

    CrossRef  PubMed  CAS  Google Scholar 

  • Van Summeren A, Renes J, van Delft JH et al (2012) Proteomics in the search for mechanisms and biomarkers of drug-induced hepatotoxicity. Toxicol In Vitro 26:373–385

    CrossRef  PubMed  CAS  Google Scholar 

  • van Vliet E (2011) Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX 28:17–44

    CrossRef  PubMed  Google Scholar 

  • Villeneuve DL, Crump D, Garcia-Reyero N et al (2014) Adverse outcome pathway development II: best practices. Toxicol Sci 142:321–330

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Wanichthanarak K, Fahrmann JF, Grapov D (2015) Genomic, proteomic, and Metabolomic data integration strategies. Biomark Insights 10(S4):1–6

    PubMed  PubMed Central  Google Scholar 

  • Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5:936–948

    CrossRef  PubMed  CAS  Google Scholar 

  • Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(Database issue):D521–D526

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0—the human metabolomics database in 2013. Nucleic Acids Res 41:D801–D807

    CrossRef  PubMed  CAS  Google Scholar 

  • Woodcock J, Woolsley R (2008) The FDA critical path initiative and its influence on new drug development. Annu Rev Med 59:1–12

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–230

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary T. McBride .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

McBride, M.T. (2018). The Application of Omics Data to the Development of AOPs. In: Garcia-Reyero, N., Murphy, C. (eds) A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-66084-4_9

Download citation