Skip to main content

A Tale of Two Symmetries: Embeddable and Non-embeddable Group Actions on Surfaces

  • Chapter
  • First Online:
Book cover A Primer for Undergraduate Research

Part of the book series: Foundations for Undergraduate Research in Mathematics ((FURM))

  • 1422 Accesses

Abstract

Plainly speaking, a compact Riemann surface, S, can be thought of as the layer of glaze on a g-holed doughnut. A group of symmetries of S is a group that acts on S while preserving some of its underlying structure. We provide an easily understood exposition of the modern techniques used to determine which groups can act as symmetry groups on a compact Riemann surface S of genus g ≥ 2. We then illustrate these techniques by providing necessary and sufficient conditions for the existence of an A 4-action on such a surface (in terms of a signature), and through explicit geometric construction show which of these actions are embeddable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Stated more carefully, the extra structure that makes a classical surface a Riemann surface is a complex analytic structure resulting from the presence of a collection of local C -charts, which make the surface a one-dimensional complex manifold. As our approach here does not make direct use of the complex analytic structure of these surfaces, however, we may safely eschew such technical details.

  2. 2.

    Our use of the word “symmetry” here is a colloquial choice to replace the more precise but less widely known “conformal automorphism.”

  3. 3.

    Specifically, the signatures (0; −), (1; −), (0; 2), (0; 2, 2), (0; 2, 2, 2), (0; 2, 2, 2, 2), (0; 3), (0; 3, 3), (0; 3, 3, 3), (0; 2, 3), (0; 2, 2, 3), and (0; 2, 3, 3), can all be excluded, where (h; −) denotes an action with no branch points.

References

  1. Arbo, M., Benkowski, K., Coate, B., Nordstrom, H., Peterson, C., Wootton, A.: The genus level of a group. Involve 2(3), 323–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benim, R.: Classification of quasiplatonic Abelian groups and signatures. Rose-Hulman Undergrad. Math. J. 9(1), Article 1 (2008)

    Google Scholar 

  3. Broughton, S.A.: Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69, 233–270 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broughton, S.A., Haney, D.M., McKeough, L.T., Mayfield, B.S.: Divisible tilings in the hyperbolic plane. New York J. Math. 6, 237–283 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Costa, A.F.: Embeddable anticonformal automorphisms of Riemann surfaces. Comment. Math. Helv. 72(2), 203–215 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garsia, A.M.: An embedding of closed Riemann surfaces in euclidean space. Comment. Math. Helv. 35, 93–110 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghrist, R., Peterson, V.: The geometry and topology of reconfiguration. Adv. Appl. Math. 38(3), 302–323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Harvey, W.J.: Cyclic groups of automorphisms of a compact Riemann surface. Q. J. Math. Oxford Ser. (2) 17, 86–97 (1966)

    Google Scholar 

  9. Hillman, A.P., Alexanderson, G.L.: Abstract Algebra: A First Undergraduate Course. Waveland Press, Inc., Prospect Heights, IL (1994)

    MATH  Google Scholar 

  10. Hurwitz, A.: Ueber algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Ann. 41(3), 403–442 (1892)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kulkarni, R.S.: Symmetries of surfaces. Topology 26(2), 195–203 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kulkarni, R.S., Maclachlan, C.: Cyclic p-groups of symmetries of surfaces. Glasgow Math J. 33, 213–221 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, F.L.: Embeddable dihedral groups of Riemann surfaces. Chinese J. Math. 7(2), 133–152 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Lin, F.L.: Conformal symmetric embeddings of compact Riemann surfaces. Tamkang J. Math. 10(1), 97–103 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Maclachlan, C., Talu, Y.: p-groups of symmetries of surfaces. Michigan Math. J. 45, 315–332 (1998)

    Google Scholar 

  16. Martin, G.: Transformation Geometry: An Introduction to Symmetry. Undergraduate Texts in Mathematics. Springer, New York (1982)

    Book  MATH  Google Scholar 

  17. Miranda, R.: Algebraic Curves and Riemann Surfaces. Graduate Studies in Mathematics, vol. 5. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  18. Rüedy, R.A.: Deformations of embedded Riemann surfaces. In: Advances in the Theory of Riemann Surfaces (Proceedings of Conference, Stony Brook, NY, 1969) Annal of Mathematics Studies, vol. 66, pp. 385–392. Princeton University Press, Princeton, NJ (1969)

    Google Scholar 

  19. Rüedy, R.A.: Embeddings of open Riemann surfaces. Comm. Math. Helv. 46, 214–225 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rüedy, R.A.: Symmetric embeddings of Riemann surfaces. In: Discontinuous Groups and Riemann Surfaces (Proceedings Conference, University of Maryland, College Park, MD, 1973), vol. 79, pp. 409–418. Annals of Mathematical Studies. Princeton University Press, Princeton, NJ (1974)

    Google Scholar 

  21. Sullivan, C.O., Weaver, A.: A Diophantine Frobenius problem related to Riemann surfaces. Glasgow Math J. 53, 501–522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tucker, T.W.: Two notes on maps and surface symmetry. In: Rigidity and Symmetry. Fields Institute Communications, vol. 70, pp. 345–355. Springer, New York (2014)

    Google Scholar 

  23. Vinroot, C.R.: Symmetry and tiling groups for genus 4 and 5. Rose-Hulman Undergrad. Math. J. 1(1), Article 5 (2000)

    Google Scholar 

  24. Zarrow, R.: Anticonformal automorphisms of compact Riemann surfaces. Proc. Am. Math. Soc. 54, 162–164 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peterson, V., Wootton, A. (2017). A Tale of Two Symmetries: Embeddable and Non-embeddable Group Actions on Surfaces. In: Wootton, A., Peterson, V., Lee, C. (eds) A Primer for Undergraduate Research. Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66065-3_2

Download citation

Publish with us

Policies and ethics