Advertisement

Medical Imaging and Its Objective Quality Assessment: An Introduction

  • Rohit ThankiEmail author
  • Surekha Borra
  • Nilanjan Dey
  • Amira S. Ashour
Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 26)

Abstract

With the rise in research on applications of medical image processing, the evaluation of parameters and techniques required for measurement of medical image quality is the need of the hour. The effective, yet automatic methods for measurement of quality of a medical image are of particular interest. This chapter is an overview of different medical imaging technologies, and the related image quality assessment (IQA) algorithms. The main focus is on objective assessment (OA), rather than subjective assessment (SA). Three types of OA-based IQA algorithms are presented in detail: full reference-based IQA (FR-IQA) algorithms; no reference-based IQA (NR-IQA) algorithms and reduced reference-based IQA (RR-IQA) algorithms.

References

  1. 1.
    Kundu D (May 2016) Subjective and objective quality evaluation of synthetic and high dynamic range images. Ph.D. Thesis, University of Texas, Austin Google Scholar
  2. 2.
    Mohammadi P, Ebrahimi-Moghadam A, Shirani S (June 2014) Subjective and objective quality assessment of image: a survey. arXiv preprint arXiv: 1406.7799Google Scholar
  3. 3.
    Strzelecki M (2013) Medical imaging. Biomedical Engineering. Institute of Electronics, Technical University of Lodz, PolandGoogle Scholar
  4. 4.
    MedPixTM Medical Image Database. Available at http://rad.usuhs.mil/medpix/medpix.html, https://medpix.nlm.nih.gov/home
  5. 5.
    Rao K, Rao V (2006) Medical image processing. In: Proceedings of workshop on medical image processing and applicationsGoogle Scholar
  6. 6.
    Anatomy and Physiology of a Flexible Scope: Anatomical Structure. Available: https://www.educationaldimensions.com/eLearn/endoscope/anatomy.php
  7. 7.
    Wang Z, Bovik A (2009) Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process Mag 26:98–117CrossRefGoogle Scholar
  8. 8.
    Wang Z, Bovik A, Simoncelli E (2004) Image Quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRefGoogle Scholar
  9. 9.
    Wang Z, Bovik A (2004) A universal image quality index. J IEEE Signal Process Lett 9(3):84–88Google Scholar
  10. 10.
    Wang Z (December 2001) Rate scalable foveated image and video communications, Ph.D. Thesis, Department of ECE, the University of Texas, AustinGoogle Scholar
  11. 11.
    Wang Z, Simoncelli E, Bovik A (November 2003) Multi-scale structural similarity for image quality assessment. In: Proceedings of the 37th IEEE asilomar conference on signals, systems and computers, Pacific GroveGoogle Scholar
  12. 12.
    Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Zhang L, Zhang L, Mou X, Zhang D FSIM: a feature similarity index for image quality assessment. Available: http://www.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm
  14. 14.
    Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc London B: Bio Sci 207:187–217CrossRefGoogle Scholar
  15. 15.
    Morrone M, Burr D (1988) Feature detection in human vision: a phase-dependent energy model. Proc Royal Soc London B: Biol Sci 235:221–245CrossRefGoogle Scholar
  16. 16.
    Morrone M, Ross J, Burr D, Owens R (1986) Mach bands are phase dependent. Nature 324:250–253CrossRefGoogle Scholar
  17. 17.
    Morrone M, Owens R (1987) Feature detection from local energy. Pattern Recogn Lett 6:303–313CrossRefGoogle Scholar
  18. 18.
    Kovesi P (1999) Image Features from phase congruency. Videre: J Comput Vision Res 1(3):1–26Google Scholar
  19. 19.
    Jahne B, Haussecker H, Geissler P (1999) Handbook of computer vision and applications, Academic PressGoogle Scholar
  20. 20.
    Jain R, Kasturi R, Schunck B (1995) Machine Vision. McGraw-HillGoogle Scholar
  21. 21.
    Ye P, Doermann D (2011) No-reference image quality assessment based on visual codebook. In: IEEE international conference on image processing, pp 3150–3153Google Scholar
  22. 22.
    Tang H, Joshi N, Kapoor A (June 2011) Learning a blind measure of perceptual image quality. In: Proceedings of 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 305–312Google Scholar
  23. 23.
    Moorthy A, Bovik A (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364CrossRefMathSciNetGoogle Scholar
  24. 24.
    Mittal A, Moorthy M, Bovik A (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21:4695–4708CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Saad M, Bovik A, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Geissler A, Gartus A, Foki T, Tahamtan A, Beisteiner R, Barth M (2007) Contrast to noise ratio (CNR) as a quality parameter in fMRI. J Magn Reson Imaging 25(7):1263–1270CrossRefGoogle Scholar
  27. 27.
    Kyrki V, Kamarainen J (2004) Simple gabor feature space for invariant object recognition. Pattern Recogn 25:311–318CrossRefGoogle Scholar
  28. 28.
    Scholkopf B, Smola A, Williamson C, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5):1207–1245CrossRefGoogle Scholar
  29. 29.
    Jayant NK, Borra S (June 2016) Attendance management system using hybrid face recognition techniques. Conference on advances in signal processing (CASP), IEEE, pp 412–417Google Scholar
  30. 30.
    Baraniuk R (January 2005) Multiscale Geometric image analysis. Rice UniversityGoogle Scholar
  31. 31.
    Laparra V, Munoz-Mari J, Malo J (2010) Divisive normalization image quality metric revisited. J Opt Soc Am A 27(4):852–864CrossRefGoogle Scholar
  32. 32.
    Teo P, Heeger D (1994) Perceptual image distortion. Proc SPIE 2179:127–141CrossRefGoogle Scholar
  33. 33.
    Watson A, Solomon J (1997) A model of visual contrast gain control and pattern masking. J Opt Soc Am A 14(9):2379–2391CrossRefGoogle Scholar
  34. 34.
    Heeger D (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9:181–198CrossRefGoogle Scholar
  35. 35.
    Campbell F, Robson J (1968) Application of fourier analysis to the visibility of gratings. J Physiol 197(3):551–566CrossRefGoogle Scholar
  36. 36.
    Malo J, Pons A, Felipe A, Artigas J (1997) Characterization of human visual system threshold performance by a weighting function in the gabor domain. J Mod Opt 44(1):127–148CrossRefGoogle Scholar
  37. 37.
    Wang S, Zhang X, Ma S, Gao W (December 2013) Reduced reference image quality assessment using entropy of primitives. In: Picture coding symposium (PCS), pp 193–196Google Scholar
  38. 38.
    Elad M (2010) Sparse and redundant representations: from theory to application in signal and image processing. SpringerGoogle Scholar
  39. 39.
    Zhang X, Wang S, Ma S, Liu S, Gao W (2013) Entropy of primitive: a top-down methodology for evaluating the perceptual visual information. Submitted to VCIP 2013Google Scholar
  40. 40.
    Yang D, Shen Y, Shen Y, Li H (2016) Reduced reference image quality assessment using moment method. Int J Electron. doi: 10.1080/00207217.2016.1138517 Google Scholar
  41. 41.
    Sharifi K, Leon G (1995) Estimation of shape parameter for generalized gaussian distributions in subband decompositions of video. IEEE Trans Circuits Syst Video Technol 5:52–56CrossRefGoogle Scholar
  42. 42.
    Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693CrossRefzbMATHGoogle Scholar
  43. 43.
    Borra S, Swamy G (2010) Sensitive digital image watermarking for copyright protection. IJ Network Security 15(2):113–121Google Scholar
  44. 44.
    Kapoor R, Gupta R (2011) Statistically matched wavelet-based method for detection of power quality events. Int J Electron 98:109–127CrossRefGoogle Scholar
  45. 45.
    Liu D, Xu Y, Quan Y, Callet P (2014) Reduced reference image quality assessment using regularity phase congruency. Sig Process Image Commun 29(8):844–855CrossRefGoogle Scholar
  46. 46.
    Bhateja V, Kalsi A, Srivastava A (2015) Image similarity metric (ISIM): a reduced reference image quality assessment approach. CSI Trans ICT 3(1):1–11CrossRefGoogle Scholar
  47. 47.
    Balanov A, Schwartz A, Moshe Y, Peleg N (2015) Image quality assessment based on DCT subband similarity. In: 2015 IEEE international conference on image processing, pp 2105–2109Google Scholar
  48. 48.
    Balanov A, Schwartz A, Moshe, Y (September 2015) Reduced-Reference image quality assessment based on DCT subband similarity. In: Proceedings of 2015 IEEE international conference on image processing (ICIP), pp 2105–2109Google Scholar
  49. 49.
    Dey N, Roy P, Das A, Chaudhuri S (October 2012) DWT-DCT-SVD based Intravascular Ultrasound Video Watermarking. In: Proceedings of 2012 ieee world congress on information and communication technologies (WICT), pp 224–229Google Scholar
  50. 50.
    Dey N, Ashour A, Beagum S, Pistola D, Gospodinov M, Gospodinova E, Tavares J (2015) Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain mri image denoising. J Imaging 1(1):60–84CrossRefGoogle Scholar
  51. 51.
    Thanki R, Kher R, Vyas D (January 2011) Performance analysis of correlation based watermarking techniques for medical images in presence of WGN. In: Proceedings of 2nd international conference on signal, systems and automation (ICSSA—2011), Vallabh Vidyanagar, India, pp. 168–172Google Scholar
  52. 52.
    Ashour A, Samanta S, Dey N, Kausar N, Abdessalemkaraa W, Hassanein A (2015) Computed tomography image enhancement using cuckoo search: a log transform based approach. J Signal Inf Process 6(3):244Google Scholar
  53. 53.
    Rani J, Kumar R, Talukdar F, Dey N (March 2017) The brain tumor segmentation using fuzzy c-means technique: a study. In: Recent advances in applied thermal imaging for industrial applications, pp 40–61Google Scholar
  54. 54.
    Saba L, Dey N, Ashour A, Samanta S, Nath S, Chakraborty S, Sanches S, Kumar D, Marinho R, Suri J (2016) Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm. Comput Methods Programs Biomed 130:118–134CrossRefGoogle Scholar
  55. 55.
    Tian Z, Dey N, Ashour A, McCauley P, Shi F (March 2017) Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural computing applications, pp 1–16Google Scholar
  56. 56.
    Kale G, Patil V (2016) A Study of vision based human motion recognition and analysis. Int J Ambient Computing Intell (IJACI) 7(2):75–92CrossRefGoogle Scholar
  57. 57.
    Sharma K, Virmani J (2017) A decision support system for classification of normal and medical renal disease using ultrasound images: a decision support system for medical renal disease. Int J Ambient Computing Intell (IJACI) 8(2):52–69CrossRefGoogle Scholar
  58. 58.
    Neng L, Chambel T (2012) “Get around 360° hypervideo: its design and evaluation. Int J Ambient Computing Intell (IJACI) 4(4):40–57CrossRefGoogle Scholar
  59. 59.
    Hemalatha S, Anouncia S (2016) A computational model for texture analysis in images with fractional differential filter for texture detection. Int J Ambient Computing Intell (IJACI) 7(2):93–113CrossRefGoogle Scholar
  60. 60.
    VQEG (March 2000) Final report from the video quality experts group on the validation of objective models of video quality assessment. Available: http://www.vgeg.org
  61. 61.
    Wang Z, Bovik A, Sheikh H, Simoncelli E, The SSIM index for image quality assessment. Available: http://ece.uwaterloo.ca/~z70wang/research/ssim/
  62. 62.
    Wang Z, Simoncelli E, Bovik A, Multi-scale structural similarity for image quality assessment. Available: http://ece.uwaterloo.ca/~z70wang/research/ssim/msssim

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rohit Thanki
    • 1
    Email author
  • Surekha Borra
    • 2
  • Nilanjan Dey
    • 3
  • Amira S. Ashour
    • 4
  1. 1.Faculty of Technology and EngineeringC. U. Shah UniversityWadhwan CityIndia
  2. 2.Department of ECEK. S. Institute of TechnologyBangaloreIndia
  3. 3.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  4. 4.Department of Electronics and Electrical Communications Engineering, Faculty of EngineeringTanta UniversityTantaEgypt

Personalised recommendations