Evaluation of Postural Stability During Quiet Standing Using MatLab Software and Promising Parameters

  • Veronika Kotolova
  • Patrik Kutilek
  • Slavka Viteckova
  • Jonas Palicka
  • Zdenek Svoboda
  • Vaclav Krivanek
  • Radek Doskocil
  • Alexandr Stefek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 644)

Abstract

In this paper we describe software and methods for the study of characteristics of postural stability using MatLab software. Proposed methods and software are alternative to specialized software which is part of the cometcial posturography systems that only use established methods. The proposed software allows to determine postural stability of the body, especially during Romberg’s test, on the basis of the recording the movement of center of pressure (CoP). Compared to other commercial software the proposed methods enable us direct use of MatLab toolboxes. Also, the proposed software allows us to calculate the new parameters of postural stability. These parameters ate: turns index, alternate Romberg ratio (torque) angle deviation, mean squared critical displacement, etc. Designed software model and analytical methods could be useable and widely applied in research for example of neurological disorders or musculoskeletal system disabilities. The designed program offering a much wider application than commercial sw.

Keywords

Postural stability Quantitative evaluation Stabilometric platform Centre of pressure 

References

  1. 1.
    Bastos, A.G., de Lima, M.A., de Oliveira, L.F.: Evaluation of patients with dizziness and normal electronystagmography using stabilometry. Braz. J. Otorhinolaryngol. 71(3), 305–310 (2005)CrossRefGoogle Scholar
  2. 2.
    Deepa, S.N., Sivanandam, S.N.: Matlab: With Control System, Signal Processing and Image Processing Toolboxes. Wiley India Pvt Ltd., New Delhi (2015)Google Scholar
  3. 3.
    Cakrt, O., Vyhnalek, M., Slaby, K., Funda, T., Vuillerme, N., Kolar, P., Jerabek, J.: Balance rehabilitation therapy by tongue electrotactile biofeedback in patients with degenerative cerebellar disease. NeuroRehabilitation 31(4), 429–434 (2012)Google Scholar
  4. 4.
    Khasnis, A., Gokula, R.M.: Romberg’s test. J. Postgrad. Med. 49(2), 169–172 (2003)Google Scholar
  5. 5.
    Mancini, M., Salarian, A., Carlson-Kuhta, P., Zampieri, C., King, L., Chiari, L., Horak, F.B.: ISway: a sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 9, 59 (2012)CrossRefGoogle Scholar
  6. 6.
    Schubert, P., Kirchner, M., Schmidtbleicher, D., Haas, C.T.: About the structure of posturography: sampling duration, parametrization, focus of attention (part I). J. Biomed. Sci. Eng. 5(9), 496–507 (2012)CrossRefGoogle Scholar
  7. 7.
    Kutilek, P., Viteckova, S., Svoboda, Z., Hejda, J.: Application of portable force platforms equipped with a device for measuring position and orientation. Acta Polytech. 53(4), 365–370 (2013)Google Scholar
  8. 8.
    Kusmirek, S., Hana, K., Socha, V., Prucha, J., Kutilek, P., Svoboda, Z.: Postural instability assessment using trunk acceleration frequency analysis. Eur. J. Physiother. 18(4), 237–244 (2016)CrossRefGoogle Scholar
  9. 9.
    Masani, K., Vette, A.H., Abe, M.O., Nakazawa, K.: Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing. Gait Posture 39(3), 946–952 (2014)CrossRefGoogle Scholar
  10. 10.
    Krafczyk, S., Schlamp, V., Dieterich, M., Haberhauer, P., Brandt, T.: Increased body sway at 3.5–8 Hz in patients with phobic postural vertigo. Neurosci. Lett. 259(3), 149–152 (1999)CrossRefGoogle Scholar
  11. 11.
    Krafczyk, S., Tietze, S., Swoboda, W., Valkovič, P., Brandt, T.: Artificial neural network: a new diagnostic posturographic tool for disorders of stance. Clin. Neurophysiol. 117(8), 1692–1698 (2006)CrossRefGoogle Scholar
  12. 12.
    Wollseifen, T.: Different methods of calculating body sway area. Pharm. Program. 4(1–2), 91–106 (2013)Google Scholar
  13. 13.
    Kutilek, P., Cakrt, O., Socha, V., Hana, K.: Volume of convex hull: A technique for quantifying human postural stability. J. Mech. Med. Biol. 16(2), 1–13 (2016)CrossRefGoogle Scholar
  14. 14.
    Kutilek, P., Socha, V., Cakrt, O., Cerny, R.: Head movement analysis based on areas of convex hull and confidence ellipse obtained using two motion capture systems. J. Med. Biol. Eng. 35(3), 348–356 (2015)CrossRefGoogle Scholar
  15. 15.
    Raymakers, J.A., Samson, M.M., Verhaar, H.J.: The assessment of body sway and the choice of the stability parameter(s). Gait Posture 21(1), 48–58 (2005)CrossRefGoogle Scholar
  16. 16.
    Collins, J.J., De Luca, C.J.: Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95(2), 308–318 (1993)CrossRefGoogle Scholar
  17. 17.
    Mazaheri, M., Negahban, H., Salavati, M., Sanjari, M.A., Parnianpour, M.: Reliability of recurrence quantification analysis measures of the center of pressure during standing in individuals with musculoskeletal disorders. Med. Eng. Phys. 32(7), 808–812 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Veronika Kotolova
    • 1
  • Patrik Kutilek
    • 1
  • Slavka Viteckova
    • 1
  • Jonas Palicka
    • 1
  • Zdenek Svoboda
    • 2
  • Vaclav Krivanek
    • 3
  • Radek Doskocil
    • 3
  • Alexandr Stefek
    • 3
  1. 1.Faculty of Biomedical EngineeringCzech Technical University in PragueKladnoCzech Republic
  2. 2.Faculty of Physical CulturePalacky University OlomoucOlomoucCzech Republic
  3. 3.Faculty of Military TechnologyUniversity of DefenceBrnoCzech Republic

Personalised recommendations