Investigation of Magnetic Properties of Amorphous Fe-Based Alloy Magnetized in Rayleigh Region

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 644)


The following paper presents the original results of investigation on the Fe78B13Si9 amorphous alloy and its magnetic properties in low magnetizing fields known as Rayleigh region. The Rayleigh region is the first part of the initial magnetization curve, where magnetic B-H characteristic of the material could be approximated with second degree polynomial equation. The material formed into ring-shaped sample was investigated with the special digitally controlled measurement system. Obtained results are consistent with theoretical description of Rayleigh region.


Ferromagnetism Magnetic properties Rayleigh region Amorphous alloy Metallic glass 



This work was partially supported by statutory founds of Institute of Metrology and Biomedical Engineering, Warsaw University of Technology (Poland).


  1. 1.
    O’Handley, R.: Modern Magnetic Materials – Principles and Applications. Wiley, New York (2000)Google Scholar
  2. 2.
    Bieńkowski, A.: Magnetoelastic Villari effect in Mn-Zn ferrites. J. Magn. Magn. Mater. 215–216, 231–233 (2000). doi: 10.1016/S0304-8853(00)00124-4 CrossRefGoogle Scholar
  3. 3.
    Jackiewicz, D., Szewczyk, R., Salach, J., Bieńkowski, A.: Application of extended Jiles-Atherton Model for modelling the influence of stresses on magnetic characteristics of the construction steel. Acta Phys. Pol. A 126(1), 392–393 (2014). doi: 10.12693/APhysPolA.126.392 CrossRefGoogle Scholar
  4. 4.
    Svec Sr., P., Szewczyk, R., Salach, J., Jackiewicz, D., Svec, P., Bieńkowski, A., Hosko, J.: Magnetoelastic properties of selected amorphous systems tailored by thermomagnetic treatment. J. Electr. Eng. 65(4), 259–261 (2014). doi: 10.2478/jee-2014-0040 Google Scholar
  5. 5.
    Shi, Y., Fan, S.: Application of magnetoelastic effect of ferromagnetic materials in stress measurement. Adv. Mater. Res. 496, 306–309 (2012). doi: 10.4028/ CrossRefGoogle Scholar
  6. 6.
    Morón, C., Cabrera, C., Morón, A., García, A., González, M.: Magnetic sensors based on amorphous ferromagnetic materials: a review. Sensors 15(11), 28340–28366 (2015). doi: 10.3390/s151128340 CrossRefGoogle Scholar
  7. 7.
    Švec, P., et al.: Preparation, processing and selected properties of modern melt-quenched alloys. In: Awrejcewicz, J., Szewczyk, R., Trojnacki, M., Kaliczyńska, M. (eds.) Mechatronics - Ideas for Industrial Application. Advances in Intelligent Systems and Computing, pp. 381–396. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Muratore, C., et al.: Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014). doi: 10.1063/1.4885391 CrossRefGoogle Scholar
  9. 9.
    Salach, J., et al.: The influence of thermomagnetic treatment on the magnetoelastic characteristics of Fe61Co19Si5B15 amorphous alloys. Acta Phys. Pol. A 127(2), 617–619 (2015). doi: 10.12693/APhysPolA.127.617 CrossRefGoogle Scholar
  10. 10.
    Novák, L., Kováč, J.: Rayleigh region in amorphous and nanocrystaline FINEMET alloy. Acta Phys. Pol. A 126(1), 126–127 (2014). doi: 10.12693/APhysPolA.126.126 CrossRefGoogle Scholar
  11. 11.
    Rayleigh, L.: On the behaviour of iron and steel under the operation of feeble magnetic forces. Philos. Mag. 23(142), 225–245 (1887). doi: 10.1080/14786448708628000 CrossRefMATHGoogle Scholar
  12. 12.
    Tumański, S.: Handbook of Magnetic Measurements. CRC Press, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Urbański, M., Charubin, T., Rozum, P., Nowicki, M., Szewczyk, R.: Automated system for testing ferromagnetic materials. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. Advances in Intelligent Systems and Computing, vol. 440, pp. 817–825. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29357-8_72 CrossRefGoogle Scholar
  14. 14.
    Gazda, P., Nowicki, M., Kachniarz, M., Szudarek, M., Szewczyk, R.: Active LR integrator circuit for drift-free fluxmeter. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Automation 2017. Advances in Intelligent Systems and Computing, vol. 550, pp. 519–526. Springer, Heidelberg (2017). doi: 10.1007/978-3-319-54042-9_51 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Maciej Kachniarz
    • 1
  • Jacek Salach
    • 1
  • Roman Szewczyk
    • 1
  1. 1.Institute of Metrology and Biomedical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations