Classical Interpretation of Ultra-Low Intensity Optical Heterodyning as a Pragmatic Approach to Photon Size Determination

  • Ryszard Jablonski
  • Amin Al-Tabich
  • Vladimir Rysakov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 644)


The experimental results on heterodyning the light beams of small intensity (“single photon” level) are presented. It is shown that the semi-classical theory of photon as the wave packet is the most suitable for the interpretation of “single photon” experiments, if only the value of length of photon would be corrected according to our proposal. A study of the statistics of photon distribution during heterodyning of two laser beams shifted in frequency made it possible to experimentally estimate the length of photon. It is shown that photon represents the wave packet of needle-shaped form with spatial length determined by the coherence length of the light radiation and substantially exceeds the wavelength λ. The pulse duration on the output of photomultiplier (PM), originated from single photon, is determined only by processes in the PM and does not refer to the length of photon. It enables the interpretation of obtained results with regard to the well-recognized principles of physics.


Photon size Heterodyning Coherence length Single photon Photon statistics 


  1. 1.
    Migdal, A., Dowling, J.: J. Mod. Optics 51, 1265–1266 (2004)CrossRefGoogle Scholar
  2. 2.
    Afshar, S.S.: Proc. SPIE 5866, 229 (2005)CrossRefGoogle Scholar
  3. 3.
    Menzel, R., Puhlmann, D., Heuer, A., Schleich, W.P.: Proc. Natl. Acad. Sci. U.S.A. 109, 9314–9319 (2012)CrossRefGoogle Scholar
  4. 4.
    Davis, C.C.: IEEE J. Quantum Electron. 15, 26–29 (1979)CrossRefGoogle Scholar
  5. 5.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  6. 6.
    Sipe, J.: Phys. Rev. A 52, 1875–1883 (1995)CrossRefGoogle Scholar
  7. 7.
    Hunter, G., Wadlinger, R.L.P.: Phys. Essays 2, 158–172 (1989)CrossRefGoogle Scholar
  8. 8.
    Hunter, G., Kowalski, M., Alexandrescu, C.: 1, 1–9. arXiv:quant-ph/0506231
  9. 9.
    Thomson, J.J.: Nature 137–146, 23 (1936)Google Scholar
  10. 10.
    Honig, W.: Found. Phys. 4, 367–375 (1974)CrossRefGoogle Scholar
  11. 11.
    Bertein, F.: Bases De L’Electronique Quantique, t. 2. Editions Eyrolles, Paris (1969)Google Scholar
  12. 12.
    Teich, M.C.: Appl. Phys. Lett. 14, 201–203 (1969)CrossRefGoogle Scholar
  13. 13.
    Alkon, D.L.: Biophys. J. 80, 2056–2061 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ryszard Jablonski
    • 1
  • Amin Al-Tabich
    • 1
    • 2
  • Vladimir Rysakov
    • 1
  1. 1.Faculty of MechatronicsWarsaw University of TechnologyWarsawPoland
  2. 2.Graduate School of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations