Valve for Testing Rocket Engines

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 644)

Abstract

Tests of rocket engines are expensive, among other things, due to a necessity of using costly propellants during the tests, hydrogen peroxide especially. If the tests involve application of different doses of the fuel and the oxidizer, their costs may be reduced owing to application of valves that make it possible to change the flow capacity of the liquid during operation of the engine. The authors elaborated a design of a valve with a cavitation Venturi tube, in which the throttling needle is displaced by means of a screw gear driven by a DC motor. Simulation study of the designed valve confirmed its capability for performing complex functions, including realization of the whole cycle, from closing to full opening of the valve, within a time no longer than 20 ms.

Keywords

Valves for rocket engines Electric drives 

References

  1. 1.
    Cervone, A., Torre, L., d’Agostino, L., Musker, A.J., Roberts, G.T., Bramanti, C., Saccoccia, G.: Development of Hydrogen Peroxide Monopropellant Rockets. AIAA (2006). Paper No. 5239Google Scholar
  2. 2.
    Sutton, G.P., Biblarz, O.: Rocket Propulsion Elements. Wiley, NewYork (2001)Google Scholar
  3. 3.
    Huzel, D.K., Huang, D.K.: Modern Engineering for Design of Liquid-Propellant Rocket Engines. AIAA, Washington (1992)Google Scholar
  4. 4.
    Krawczyk, M.: Konstrukcja zaworu sterującego wydatkiem cieczy w silniku rakietowym. B.Sc. Diploma work, Warsaw University of Technology, Warsaw (2016)Google Scholar
  5. 5.
    Turner, M.J.: Rocket and Spacecraft Propulsion: Principles. Practice and New Developments. Springer, Berlin (2006)Google Scholar
  6. 6.
    Maxon: High Precision Drives and Systems. Catalogue (2012)Google Scholar
  7. 7.
    Okniński, A., Bartkowiak, B., Sobczak, K., Kublik, D., Surmacz, P., Rarata, G., Marciniak, B., Wolański, P.: Development of a small green bipropellant rocket engine using hydrogen peroxide as oxidizer. In: Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Propulsion and Energy Forum. AIAA (2014). Paper No. 3592Google Scholar
  8. 8.
    Surmacz, P., Rarata, G.: Badanie katalitycznego rozkładu 98% nadtlenku wodoru z wykorzystaniem katalizatorów Al2O3/MnxOy, promowanych tlenkami metali przejściowych. Prace Instytutu Lotnictwa 234, 51–61 (2014)Google Scholar
  9. 9.
    Portescap: Product catalogue (2015). www.portescap.com. Accessed 20 Nov 2015
  10. 10.
    Wiśniowski, W., Wolański, P.: Rola Instytutu Lotnictwa w badaniach kosmicznych. Prace Instytutu Lotnictwa 234, 9–16 (2014). doi:10.5604/05096669.1106721 Google Scholar
  11. 11.
    Wierciak, J., Credo, W., Bagiński, K.: Selection of electric driving modules for orthotic robot. In: Jabłoński, R., Březina, T. (eds.) Advanced Mechatronics Solutions, pp. 297–303. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  12. 12.
    Wierciak, J., Oleksiuk, W.: Selection of DC motor as well as gear ratio for reliable operation of mechatronic devices. In: Proceedings of 6th International conference Dynamics of Gear Drives, Zavazna Poruba, Slovak Republic, 19–22 June 2002Google Scholar
  13. 13.
    Tian, H., Zeng, P., Yu, N., Cai, G.: Application of variable area cavitating venturi as a dynamic flow controller. Flow Meas. Instrum. 38, 21–26 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of MechatronicsWarsaw University of TechnologyWarsawPoland
  2. 2.Institute of AviationWarsawPoland

Personalised recommendations