Using Homomorphic Encryption to Compute Privacy Preserving Data Mining in a Cloud Computing Environment

Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 299)


Cloud computing refers to an information technology infrastructure where data and software are stored and processed in a remote data center, accessible as a service through the Internet. Typical data centers within these fields are large, complex and often noisy. Further-more, privacy preserving data mining is an important challenge. It is required to protect the confidentiality of data sources during the extraction of frequent closed patterns. In fact, no site should be able to learn contents of a transaction at any other site. The work carried out in this paper deals with this problem. In this context, we suggest an approach that combines the extraction of frequent closed patterns in a distributed environment such as the cloud. We aim at maintaining the privacy of the sites during the data mining task in a cloud environment based on homomorphic encryption. The Simulation results and performance analysis show that our mechanism requires less communication and computation overheads. It can effectively preserve data privacy, check data integrity, and ensures high data transmission efficiency.


Cloud computing Privacy Data mining Confidentiality Frequent closed patterns Homomorphic encryption 


  1. 1.
    Muller, S.D., Holm, S.R., Sondergaard, J.: Benefits of cloud computing: literature review in a maturity model perspective. Commun. Assoc. Inf. Syst. 37 (2015). Article no. 42Google Scholar
  2. 2.
    Hayward, R., Chiang, C.C.: Parallelizing fully homomorphic encryption for a cloud environment. J. Appl. Res. Technol. 13(2), 245–252 (2015). ISSN 1665-6423CrossRefGoogle Scholar
  3. 3.
    Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference In: KDD Conference, pp. 66–75 (2000)Google Scholar
  4. 4.
    Zitouni, M., Akbarinia, R., Ben Yahia, S., Masseglia, F.: A prime number based approach for closed frequent itemset mining in big data. In: 26th International Conference on Database and Expert Systems Applications, DEXA 2015 Valencia, Spain (2015)Google Scholar
  5. 5.
    Ben Yahia, S., Mephu Nguifo, E.: Approches d’extraction de règles d’association basées sur la correspondance de Galois. Ingénierie des systèmes d’information 9(3–4), 23–55 (2004)CrossRefGoogle Scholar
  6. 6.
    Kumarn, D.S, Suneetha, C.H., Chandrasekhar, A.: Encryption of data using elliptic curve. Int. J. Distrib. Parallel Syst. (IJDPS) 3(1) (2012)Google Scholar
  7. 7.
    Gajbhiye, S., Karmakar, S., Sharma, M.: Diffie Hellman key agreement with elliptic curve discrete logarithm problem. Int. J. Comput. Appl. 129(12) (2015). (0975 8887)Google Scholar
  8. 8.
    Moumita, R., Nabamita, D., Jyoti, K.A.: Point generation and base point selection in ECC: an overview. Int. J. Adv. Res. Comput. Commun. Eng. 3(5) (2014)Google Scholar
  9. 9.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_26 CrossRefGoogle Scholar
  10. 10.
    Vassilios, S.V., Elisa, B., Igor, N.F., Loredana, P.P., Yucel, S., Yannis, T.: State of the art in privacy preserving data mining. SIGMOD Rec. 33, 50–57 (2004)CrossRefGoogle Scholar
  11. 11.
    Wang, P.: Survey on privacy preserving data mining. Int. J. Digit. Content Technol. Appl. 4(9) (2010)Google Scholar
  12. 12.
    Thakur, D., Gupta, H.: An exemplary study of privacy preserving association rule mining techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(11) (2013). P.C.S.T., BHOPAL C.S Dept., IndiaGoogle Scholar
  13. 13.
    Nithya, C.V., Jeyasree, A.: Privacy preserving using direct and indirect discrimination rule method. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(12) (2013). Vivekanandha College of Technology for Women Namakkal IndiaGoogle Scholar
  14. 14.
    Lipmaa, H.: Cryptographic techniques in privacy preserving data mining, University College London, Estonian Tutorial (2007)Google Scholar
  15. 15.
    Hussien, A., Hamza, N., Hefny, H.: Attacks on anonymization-based privacy-preserving: a survey for data mining and data publishing. J. Inf. Secur. 4(2), 101–112 (2013)Google Scholar
  16. 16.
    Li, Y., Chen, M., Li, Q., Zhang, W.: Enabling multilevel trust in privacy preserving data mining. IEEE Trans. Knowl. Data Eng. 24(9), 1598–1612 (2012)CrossRefGoogle Scholar
  17. 17.
    Li, X., Yan, Z., Zhang, P.: A review on privacy-preserving data mining. In: IEEE International Conference on Computer and Information Technology (CIT), pp. 769–774 (2014)Google Scholar
  18. 18.
    Kantarcioglu, M., Clifton, C.: Privacy preserving distributed mining of association rules on horizontally partitioned data. In: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 24–31 (2002)Google Scholar
  19. 19.
    Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 639–644. ACM Press (2002)Google Scholar
  20. 20.
    Moez, W., Poncelet, P., Ben Yahia, S.: A novel approach for privacy mining of generic basic association rules. In: ACM First International Workshop on Privacy and Anonymity for Very Large Datasets, Join with CIKM 2009, France, pp. 45–52 (2009)Google Scholar
  21. 21.
    Canard, S., Desmoulins, N., Devigne, J., Le Hello, D.: Anonymisation des donnèes. Document de travail de l’objet de recherche: trust identity and privacy (2012)Google Scholar
  22. 22.
    Chang, X.-Y., Deng, D.-L., Yuan, X.-X., Hou, P.-Y., Huang, Y.-Y., Duan, L.-M.: Experimental realization of secure multi-party computation in an entanglement access network (2015)Google Scholar
  23. 23.
    Natarajan, R., Sugumar, R., Mahendran, M., Anbazhagan, K.: Design a cryptographic approach for privacy preserving data mining. Int. J. Innov. Res. Sci. Eng. Technol. 1(1) (2012)Google Scholar
  24. 24.
    Saxena, S., Kapoor, B.: State of the art parallel approaches for RSA public key based cryptosystem. Int. J. Comput. Sci. Appl. (IJCSA) 5(1) (2015)Google Scholar
  25. 25.
    Patel, S.J., Punjani, D., Jinwala, D.C.: An efficient approach for privacy preserving distributed clustering in semi-honest model using elliptic curve cryptography. Int. J. Netw. Secur. 17(3), 328–339 (2015)Google Scholar
  26. 26.
    Jitarwal, Y., Mangal, P.K., Suman, S.K.: Enhancement of elgamal digital signature based on RSA & symmetric key. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(5) (2015)Google Scholar
  27. 27.
    Okamoto, T., Uchiyama, S.: A new public key cryptosystem as secure as factoring. In: Proceedings of the Annals International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT 1998), pp. 308–318 (1998)Google Scholar
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    Rathore, B.S., Singh, A., Singh, D.: A survey of cryptographic and non-cryptographic techniques for privacy preservation. Int. J. Comput. Appl. 130(13) (2015). (09758887)Google Scholar
  32. 32.
    Wong, W.K., Cheung, D.W., Hung, E., Kao, B., Mamoulis, N.: Security in outsourcing of association rule mining. In: Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB), pp. 111–122 (2007)Google Scholar
  33. 33.
    Zhang, N., Li, M., Lou, W.: Distributed data mining with differential privacy. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 1–5 (2011)Google Scholar
  34. 34.
    Giannotti, F., Lakshmanan, L., Monreale, A., Pedreschi, D., Wang, H.: Privacy-preserving mining of association rules from outsourced transaction databases. IEEE Syst. J. 7(3), 385–395 (2013)CrossRefGoogle Scholar
  35. 35.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia

Personalised recommendations