Skip to main content

Acceleration Strategies for Data Sampling in MRI

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Magnetic resonance imaging (MRI) is a highly versatile imaging technique widely used in clinical practice. It can provide anatomical images with excellent soft tissue contrast and quantitative measurements of motion and flow. In addition, microscopic tissue structures such as neurological pathways and heart muscle fiber orientation can be assessed. One of the main challenges of MRI is long acquisition times to ensure high spatial and/or temporal resolution and full 3D coverage of the region of interest.

This chapter will give an overview of how the MR signal is created and spatially encoded and how image information can be reconstructed from this raw data. Furthermore, approaches which reduce scan times by making data acquisition faster or by reducing the amount of required raw data will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hennig J. Echoes – how to generate, recognize, use or avoid them in MR-imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes. Concepts Magn Reson. 1991;3:125–43. https://doi.org/10.1002/cmr.1820030402.

    Article  Google Scholar 

  2. Hennig J. Echoes – how to generate, recognize, use or avoid them in MR-imaging sequences. Part II: echoes in imaging sequences. Concepts Magn Reson. 1991;3:179–92. https://doi.org/10.1002/cmr.1820030402.

    Article  CAS  Google Scholar 

  3. Hargreaves B. Rapid gradient-echo imaging. J Magn Reson Imaging. 2012;36:1300–13. https://doi.org/10.1002/jmri.23742.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Markl M, Leupold J. Gradient echo imaging. J Magn Reson Imaging. 2012;35:1274–89. https://doi.org/10.1002/jmri.23638.

    Article  PubMed  Google Scholar 

  5. Tsai C-M, Nishimura DG. Reduced aliasing artifacts using variable-density k-space sampling trajectories. Magn Reson Imaging. 2000;43:452–8.

    CAS  Google Scholar 

  6. Stadler A, Schima W, Ba-Ssalamah A, Kettenbach J, Eisenhuber E. Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol. 2007;17:1242–55.

    Article  PubMed  Google Scholar 

  7. Lauzon ML, Rutt BK. Effects of polar sampling in k-space. Magn Reson Med. 1996;36:940–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lauzon ML, Rutt BK. Polar sampling in k-space: reconstruction effects. Magn Reson Med. 1998;40:769–82. https://doi.org/10.1002/mrm.1910400519.

    Article  CAS  PubMed  Google Scholar 

  9. Haacke EM, Lindskogj ED, Lin W. A fast, iterative, partial-fourier technique capable of local phase recovery. J Magn Reson. 1991;92:126–45. https://doi.org/10.1016/0022-2364(91)90253-P.

    CAS  Google Scholar 

  10. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Imaging. 1997;38:591–603.

    CAS  Google Scholar 

  11. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Imaging. 1999;42:952–62.

    CAS  Google Scholar 

  12. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10. https://doi.org/10.1002/mrm.10171.

    Article  PubMed  Google Scholar 

  13. Tsao J, Kozerke S. MRI temporal acceleration techniques. J Magn Reson Imaging. 2012;36:543–60. https://doi.org/10.1002/jmri.23640.

    Article  PubMed  Google Scholar 

  14. Davies M, Puy G, Vandergheynst P, Wiaux Y. A compressed sensing framework for magnetic resonance fingerprinting. SIAM J Imaging Sci. 2014;7:2623–56. https://doi.org/10.1137/130947246.

    Article  Google Scholar 

  15. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Imaging. 1990;16:192–225.

    CAS  Google Scholar 

  16. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM. SMASH, SENSE, PILS, GRAPPA. Top Magn Reson Imaging. 2004;15:223–36. https://doi.org/10.1097/01.rmr.0000136558.09801.dd.

    Article  PubMed  Google Scholar 

  17. Pruessmann KP. Encoding and reconstruction in parallel MRI. NMR Biomed. 2006;19:288–99. https://doi.org/10.1002/nbm.1042.

    Article  PubMed  Google Scholar 

  18. Pruessmann KP, Weiger M, Boernert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46:638–51.

    Article  CAS  PubMed  Google Scholar 

  19. Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Imaging. 2013. https://doi.org/10.1002/mrm.24751.

  20. Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM, Griswold MA. Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG). Magn Reson Imaging. 2007;58:1257–65. https://doi.org/10.1002/mrm.21435.

    Google Scholar 

  21. Seiberlich N, Breuer F, Blaimer M, Jakob P, Griswold M. Self-calibrating GRAPPA operator gridding for radial and spiral trajectories. Magn Reson Med. 2008;59:930–5. https://doi.org/10.1002/mrm.21565.

    Article  PubMed  Google Scholar 

  22. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52:1289–306. https://doi.org/10.1109/TIT.2006.871582.

    Article  Google Scholar 

  23. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52:489–509. https://doi.org/10.1109/TIT.2005.862083.

    Article  Google Scholar 

  24. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Imaging. 2007;58:1182–95. https://doi.org/10.1002/mrm.21391.

    Google Scholar 

  25. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Imaging. 2008;59:365–73. https://doi.org/10.1002/mrm.21477.

    Google Scholar 

  26. Akçakaya M, Rayatzadeh H, Basha TA, Hong SN, Chan RH, Kissinger KV, Hauser TH, Josephson ME, Manning WJ, Nezafat R. Accelerated late gadolinium enhancement cardiac MR imaging with isotropic spatial resolution using compressed sensing: initial experience. Radiology. 2012;264:691–9. https://doi.org/10.1148/radiol.12112489.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li W, Griswold M, Yu X. Fast cardiac T1 mapping in mice using a model-based compressed sensing method. Magn Reson Med. 2012;68:1127–34. https://doi.org/10.1002/mrm.23323.

    Article  PubMed  Google Scholar 

  28. Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C. Motion corrected compressed sensing for free-breathing dynamic cardiac MRI. Magn Reson Med. 2013;70:504–16. https://doi.org/10.1002/mrm.24463.

    Article  PubMed  Google Scholar 

  29. Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI: a look at how CS can improve on current imaging techniques. IEEE Signal Process Mag. 2008;25:72–82. https://doi.org/10.1109/MSP.2007.914728.

    Article  Google Scholar 

  30. Van Vaals JJ, Brummer ME, Thomas Dixon W, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, Den Boer JA. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3:671–5. https://doi.org/10.1002/jmri.1880030419.

    Article  PubMed  Google Scholar 

  31. Doyle M, Walsh EG, Blackwell GG, Pohost GM. Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn Reson Med. 1995;33:163–70. https://doi.org/10.1002/mrm.1910330204.

    Article  CAS  PubMed  Google Scholar 

  32. Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Imaging. 1996;36:345–51.

    CAS  Google Scholar 

  33. Lim RP, Shapiro M, Wang EY, et al. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. AJNR Am J Neuroradiol. 2008;29:1847–54. https://doi.org/10.3174/ajnr.A1252.

    Article  CAS  PubMed  Google Scholar 

  34. Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Imaging. 1999;42:813–28.

    CAS  Google Scholar 

  35. Kellman P, Epstein FH, Mcveigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med. 2001;45:846–52. https://doi.org/10.1002/mrm.1113.

    Article  CAS  PubMed  Google Scholar 

  36. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Imaging. 2003;50:1031–42. https://doi.org/10.1002/mrm.10611.

    Google Scholar 

  37. Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H. k-t BLAST reconstruction from non-Cartesian k-t space sampling. Magn Reson Imaging. 2006;55:85–91. https://doi.org/10.1002/mrm.20734.

    Google Scholar 

  38. Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Won YK. K-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med. 2009;62:706–16. https://doi.org/10.1002/mrm.22052.

    Article  PubMed  Google Scholar 

  39. Ding Y, Chung Y-C, Jekic M, Simonetti OP. A new approach to autocalibrated dynamic parallel imaging based on the Karhunen-Loeve transform: KL-TSENSE and KL-TGRAPPA. Magn Reson Med. 2011;65:1786–92. https://doi.org/10.1002/mrm.22766.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jung H, Ye JC, Kim EY. Improved k – t BLAST and k – t SENSE using FOCUSS. Phys Med Biol. 2007;52:3201–26. https://doi.org/10.1088/0031-9155/52/11/018.

    Article  PubMed  Google Scholar 

  41. Jung H, Sung K, Nayak KS, Kim EY, Ye JC. K-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med. 2009;61:103–16. https://doi.org/10.1002/mrm.21757.

    Article  PubMed  Google Scholar 

  42. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Imaging. 2010;64:767–76. https://doi.org/10.1002/mrm.22463.

    Google Scholar 

  43. Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Imaging. 2009;62:1574–84. https://doi.org/10.1002/mrm.22161.

    Google Scholar 

  44. Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Imaging. 2010;64:457–71. https://doi.org/10.1002/mrm.22428.

    Google Scholar 

  45. Uecker M, Zhang S, Frahm J. Nonlinear inverse reconstruction for real-time MRI of the human heart using undersampled radial FLASH. Magn Reson Imaging. 2010;63:1456–62. https://doi.org/10.1002/mrm.22453.

    Google Scholar 

  46. Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R. XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med. 2015;0:1–14. https://doi.org/10.1002/mrm.25665.

    Google Scholar 

  47. Royuela-del-Val J, Cordero-Grande L, Simmross-Wattenberg F, Martín-Fernández M, Alberola-López C. Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath-hold cardiac cine MRI. Magn Reson Med. 2016;75:1525–36. https://doi.org/10.1002/mrm.25733.

    Article  PubMed  Google Scholar 

  48. Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum. 1970;41:250.

    Article  CAS  Google Scholar 

  49. Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272:683–9. https://doi.org/10.1148/radiol.14140296.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-echo MRI. IEEE Trans Med Imaging. 2009;28:1759–69.

    Article  PubMed  Google Scholar 

  51. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature. 2013;495:187–92. https://doi.org/10.1038/nature11971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kolbitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kolbitsch, C., Schaeffter, T. (2018). Acceleration Strategies for Data Sampling in MRI. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics