Skip to main content

A Biphasic Poroelasticity Model for Soft Tissue

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Poroelastic media are characterized by biphasic structure, consisting of a solid matrix permeated by a fluid-filled pore space. Originally conceived for soil mechanics, poroelastic models have been used to study the mechanics of biological tissues, where the matrix consists of cells or the extracellular matrix, and the fluid compartment is comprised of the vascular tree, interstitial fluid, cerebro-spinal fluid, or a combination of these. Unlike simpler monophasic models, poroelasticity predicts two longitudinal (compressional) wave modes with different wave speeds. The poroelastic equations of motion depend on two interaction or coupling parameters that describe the transfer of energy or momentum between the two phases, thus leading to a system of coupled equations. In this chapter, we will explain the poroelastic tissue model, present a poroelastic version of the wave equation, and complement this theoretical part with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Tortuosity is the ratio of the length of a curve (in this case, a pore) to the Euclidean distance of its end points. Therefore, T ≥ 1, with larger values indicating a more “curled” shape of the pore space.

  2. 2.

    The value of 2.2 GPa is the bulk modulus of pure water, which is the main constituent of biological tissues. We neglect the influence of the solid shear modulus in the formula \( {M}^{\mathrm{s}}={K}^{\mathrm{s}}+\frac{4}{3}{\mu}^{\mathrm{s}} \), since, in biological tissues, μ s is three orders of magnitude smaller than compression modulus K s. We thus approximate M s ≈ K s.

References

  1. von Terzaghi K. Theoretical soil mechanics. Hoboken: Wiley; 1943.

    Book  Google Scholar 

  2. Biot MA. General theory of three-dimensional consolidation. J Appl Phys. 1941;12(2):155–64.

    Article  Google Scholar 

  3. Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys. 1955;26(2):182–5.

    Article  CAS  Google Scholar 

  4. Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am. 1956;28(2):168–78.

    Article  Google Scholar 

  5. Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am. 1956;28(2):179–91.

    Article  Google Scholar 

  6. Biot MA, Willis DG. The elastic coefficients of the theory of consolidation. J Appl Mech. 1957;24:594–601.

    Google Scholar 

  7. Konofagou EE, Harrigan TP, Ophir J, Krouskop TA. Poroelastography: imaging the poroelastic properties of tissues. Ultrasound Med Biol. 2001;27(10):1387–97.

    Article  CAS  PubMed  Google Scholar 

  8. Perriñez PR, Kennedy FE, Van Houten EEW, Weaver JB, Paulsen KD. Modeling of soft Poroelastic tissue in time-harmonic MR Elastography. IEEE Trans Biomed Eng. 2009;56(3):598–608.

    Article  PubMed  Google Scholar 

  9. Dai Z, Peng Y, Mansy HA, Sandler RH, Royston TJ. Comparison of poroviscoelastic models for sound and vibration in the lungs. J Vib Acoust. 2014;136(5):0510121–5101211.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McGarry MDJ, Johnson CL, Sutton BP, Georgiadis JG, Van Houten EEW, Pattison AJ, et al. Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography. Med Phys. 2015;42(2):947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Parker KJ. A microchannel flow model for soft tissue elasticity. Phys Med Biol. 2014;59(15):4443–57.

    Article  CAS  PubMed  Google Scholar 

  12. Parker KJ. Experimental evaluations of the microchannel flow model. Phys Med Biol. 2015;60(11):4227–42.

    Article  CAS  PubMed  Google Scholar 

  13. Landau LD, Lifschitz EM. Theory of elasticity. 3rd ed. Oxford: Butterworth Heinemann; 1986.

    Google Scholar 

  14. Hirsch S, Braun J, Sack I. Magnetic resonance elastography - physical background and medical applications. 1st ed. Weinheim: Wiley-VCH; 2017.

    Google Scholar 

  15. Plona TJ. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl Phys Lett. 1980;36(4):259–61.

    Article  Google Scholar 

  16. Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88(4):1277–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mariappan YK, Kolipaka A, Manduca A, Hubmayr RD, Ehman RL, Araoz PA, et al. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures. Magn Reson Med. 2012;67(1):210–7.

    Article  PubMed  Google Scholar 

  18. Hirsch S, Posnansky O, Papazoglou S, Elgeti T, Braun J, Sack I. Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med. 2013;69(3):667–74.

    Article  PubMed  Google Scholar 

  19. Hirsch S, Guo J, Reiter R, Schott E, Somasundaram R, Braun J, et al. Towards compression-sensitive magnetic resonance elastography of the liver: sensitivity of harmonic volumetric strain to portal hypertension. J Magn Reson Imaging. 2014;39(2):298–306.

    Article  PubMed  Google Scholar 

  20. Hirsch S, Klatt D, Freimann FB, Scheel M, Braun J, Sack I. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med. 2013;70(3):671–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirsch, S. (2018). A Biphasic Poroelasticity Model for Soft Tissue. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics