Skip to main content

Myocardial Perfusion Assessment by 3D and 4D Computed Tomography

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging
  • 1492 Accesses

Abstract

Quantification of myocardial perfusion is the holy grail of cardiovascular imaging. Computed tomography angiography (CTA) is the most accurate noninvasive diagnostic test to diagnose obstructive coronary artery disease but lacks the ability to quantify the functional relevance of coronary artery stenosis. Using myocardial CT perfusion might enable comprehensive assessment of coronary artery disease by quantification of myocardial blood flow. The rather high radiation dose and the complicated analysis of 4D CT are the main challenges for achieving this goal. This chapter summarizes the current status of myocardial perfusion imaging and describes potential technical and clinical solutions for myocardial perfusion assessment by CT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Krone RJ, Shaw RE, Klein LW, Blankenship JC, Weintraub WS, American College of Cardiology - National Cardiovascular Data Registry. Ad hoc percutaneous coronary interventions in patients with stable coronary artery disease--a study of prevalence, safety, and variation in use from the American College of Cardiology National Cardiovascular Data Registry (ACC-NCDR). Catheter Cardiovasc Interv. 2006;68:696–703.

    Article  PubMed  Google Scholar 

  2. De Bruyne B, Fearon WF, Pijls NH, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  PubMed  Google Scholar 

  3. Arai AE. Computed tomography perfusion to assess physiological significance of coronary stenosis in the post-FAME era (Fractional Flow Reserve versus Angiography for Multivessel Evaluation). J Am Coll Cardiol. 2013;62:1486–7.

    Article  PubMed  Google Scholar 

  4. Moschovitis A, Cook S, Meier B. Percutaneous coronary interventions in Europe in 2006. EuroIntervention. 2010;6:189–94.

    Article  PubMed  Google Scholar 

  5. Dewey M, Hamm B. Cost effectiveness of coronary angiography and calcium scoring using CT and stress MRI for diagnosis of coronary artery disease. Eur Radiol. 2007;17:1301–9.

    Article  PubMed  Google Scholar 

  6. So A, Hsieh J, Imai Y, et al. Prospectively ECG-triggered rapid kV-switching dual-energy CT for quantitative imaging of myocardial perfusion. JACC Cardiovasc Imaging. 2012;5:829–36.

    Article  PubMed  Google Scholar 

  7. Ishida M, Kitagawa K, Ichihara T, et al. Underestimation of myocardial blood flow by dynamic perfusion CT: explanations by two-compartment model analysis and limited temporal sampling of dynamic CT. J Cardiovasc Comput Tomogr. 2016;10:207–14.

    Article  PubMed  Google Scholar 

  8. Rief M, Zimmermann E, Stenzel F, et al. Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: prospective intraindividual comparison with conventional coronary angiography. J Am Coll Cardiol. 2013;62:1476–85.

    Article  PubMed  Google Scholar 

  9. Rochitte CE, George RT, Chen MY, et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J. 2014;35:1120–30.

    Article  PubMed  Google Scholar 

  10. Loewe C, Stadler A. Computed tomography assessment of hemodynamic significance of coronary artery disease: CT perfusion, contrast gradients by coronary CTA, and fractional flow reserve review. J Thorac Imaging. 2014;29:163–72.

    Article  PubMed  Google Scholar 

  11. Montalescot G, Sechtem U, Achenbach S, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  12. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541.

    Article  PubMed  Google Scholar 

  13. Qayyum AA, Hasbak P, Larsson HB, et al. Quantification of myocardial perfusion using cardiac magnetic resonance imaging correlates significantly to rubidium-82 positron emission tomography in patients with severe coronary artery disease: a preliminary study. Eur J Radiol. 2014;83:1120–8.

    Article  PubMed  Google Scholar 

  14. Miller CA, Naish JH, Ainslie MP, et al. Voxel-wise quantification of myocardial blood flow with cardiovascular magnetic resonance: effect of variations in methodology and validation with positron emission tomography. J Cardiovasc Magn Reson. 2014;16:11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152:167–77.

    Article  PubMed  Google Scholar 

  16. Morton G, Plein S, Nagel E. Noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152:827–8. author reply 8-9

    Article  PubMed  Google Scholar 

  17. Petretta M, Storto G, Pellegrino T, Bonaduce D, Cuocolo A. Quantitative assessment of myocardial blood flow with SPECT. Prog Cardiovasc Dis. 2015;57:607–14.

    Article  PubMed  Google Scholar 

  18. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  19. Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  20. Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: is myocardial flow quantification a clinical reality? J Nucl Cardiol. 2012;19:1044–59.

    Article  PubMed  Google Scholar 

  21. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  Google Scholar 

  22. Kajander S, Joutsiniemi E, Saraste M, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  CAS  PubMed  Google Scholar 

  23. Schuetz GM, Schlattmann P, Dewey M. Avoiding overestimation of clinical performance by applying a 3x2 table with an intention-to-diagnose approach: an exemplary meta-analytical evaluation of coronary CT angiography studies. BMJ. 2012;345:e6717. https://doi.org10.1136/bmj.e6717

  24. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57:1237–47.

    Article  PubMed  Google Scholar 

  25. EC. European Commission. Radiation Protection N° 180. Medical radiation exposure of the european population. Part 1/2. Brussels, BE: Directorate-General for Energy. Directorate D — Nuclear Safety & Fuel Cycle. Unit D3 — Radiation Protection. 2014.

    Google Scholar 

  26. Kalender W. Computed tomography. Hoboken: Wiley; 2011.

    Google Scholar 

  27. Mandelbrot B. The fractal geometry of nature. San Francisco: W. H. Freeman; 1982.

    Google Scholar 

  28. Michallek F, Dewey M. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review. Eur Radiol. 2014;24:60–9.

    Article  PubMed  Google Scholar 

  29. Captur G, Karperien AL, Hughes AD, Francis DP, Moon JC. The fractal heart - embracing mathematics in the cardiology clinic. Nat Rev Cardiol. 2017;14:56–64.

    Article  PubMed  Google Scholar 

  30. Michallek F, Dewey M. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging. Eur Radiol. 2017;27(4):1537–46.

    Google Scholar 

  31. Kitagawa K, Erglis A, Dewey M. Ch. 19. Cardiac CT2014.

    Google Scholar 

  32. Feger S, Shaban A, Lukas S, et al. Temporal averaging for analysis of four-dimensional whole-heart computed tomography perfusion of the myocardium: proof-of-concept study. Int J Cardiovasc Imaging. 2017;33:371.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Professor Dewey would like to thank his group members S. Feger, S. Lukas, F. Michallek, M. Rief, and E. Zimmermann for an exciting collaboration and excellent work on myocardial perfusion imaging. Professor Kachelrieß would like to thank F. Pisana for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dewey, M., Kachelrieß, M. (2018). Myocardial Perfusion Assessment by 3D and 4D Computed Tomography. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics