Skip to main content

Radionuclide Imaging of Cerebral Blood Flow

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging
  • 1492 Accesses

Abstract

Blood flow serves numerous important functions in the living body. It is particularly important for the brain, because of the brain’s high energy demand and its lack of capacity to store energy. Impairment of cerebral blood flow plays a central role in a wide spectrum of diseases, including not only cerebrovascular diseases but also neurodegenerative diseases such as Alzheimer’s disease. Thus, measurement of cerebral blood flow has many clinical and preclinical indications. This chapter describes radionuclide imaging methods for quantitative imaging of regional cerebral blood flow. After introducing the general principles of radionuclide imaging, positron-emission tomography (PET) with the freely diffusible tracer oxygen-15-labeled water and single photon emission computed tomography (SPECT) with the chemical microsphere Tc-99m-HMPAO are presented in detail. A representative clinical application is shown for both modalities. Finally, the utility of multi-pinhole small animal SPECT with Tc-99m-HMPAO for brain perfusion imaging in mice is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aiello LC, Wheeler P. The expensive tissue hypothesis: the brain and the digestive system in humans and primate evolution. Curr Anthropol. 1995;36:199–221.

    Article  Google Scholar 

  3. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB. Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab. 1994;14:125–31.

    Article  CAS  PubMed  Google Scholar 

  4. Heiss WD. Cerebral blood flow: physiology, pathophysiology and pharmacological effects. Adv Otorhinolaryngol. 1981;27:26–39.

    CAS  PubMed  Google Scholar 

  5. Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci U S A. 1985;82:6010–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res. 1999;24:321–9.

    Article  CAS  PubMed  Google Scholar 

  7. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45.

    Article  CAS  PubMed  Google Scholar 

  8. Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab. 2016;36:647–64.

    Article  PubMed  Google Scholar 

  9. Venkat P, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J. 2016;57:223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reivich M, Sokoloff L. Application of the 2-deoxy-D-glucose method to the coupling of cerebral metabolism and blood flow. Neurosci Res Program Bull. 1976;14:474–5.

    CAS  PubMed  Google Scholar 

  12. Spence AM, Muzi M, Graham MM, O’Sullivan F, Krohn KA, Link JM, Lewellen TK, Lewellen B, Freeman SD, Berger MS, Ojemann GA. Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. J Nucl Med. 1998;39:440–8.

    CAS  PubMed  Google Scholar 

  13. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545–80.

    Article  CAS  PubMed  Google Scholar 

  14. Kessler RM, Ellis JR Jr, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.

    Article  CAS  PubMed  Google Scholar 

  15. Nowotnik DP, Canning LR, Cumming SA, Harrison RC, Higley B, Nechvatal G, Pickett RD, Piper IM, Bayne VJ, Forster AM, et al. Development of a 99Tcm-labelled radiopharmaceutical for cerebral blood flow imaging. Nucl Med Commun. 1985;6:499–506.

    Article  CAS  PubMed  Google Scholar 

  16. Catafau AM. Brain SPECT in clinical practice. Part I: perfusion. J Nucl Med. 2001;42:259–71.

    CAS  PubMed  Google Scholar 

  17. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med. 1983;24:790–8.

    CAS  PubMed  Google Scholar 

  18. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med. 1983;24:782–9.

    CAS  PubMed  Google Scholar 

  19. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF, Nariai T, Zaharchuk G, Caille JM, Dousset V, Yonas H. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36:e83–99.

    Article  PubMed  Google Scholar 

  20. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27:476–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJ, Lammertsma AA. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol. 2005;7:273–85.

    Article  PubMed  Google Scholar 

  22. Boellaard R, van Lingen A, van Balen SC, Hoving BG, Lammertsma AA. Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med. 2001;28:81–9.

    Article  CAS  PubMed  Google Scholar 

  23. Crone C. The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand. 1963;58:292–305.

    Article  CAS  PubMed  Google Scholar 

  24. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Phys. 1959;197:1205–10.

    CAS  Google Scholar 

  25. Barfod C, Akgoren N, Fabricius M, Dirnagl U, Lauritzen M. Laser-Doppler measurements of concentration and velocity of moving blood cells in rat cerebral circulation. Acta Physiol Scand. 1997;160:123–32.

    Article  CAS  PubMed  Google Scholar 

  26. Cho BK, Tominaga T. Moyamoya disease update. Tokyo: Springer; 2010.

    Book  Google Scholar 

  27. Colamussi P, Calo G, Sbrenna S, Uccelli L, Bianchi C, Cittanti C, Siniscalchi A, Giganti M, Roveri R, Piffanelli A. New insights on flow-independent mechanisms of 99mTc-HMPAO retention in nervous tissue: in vitro study. J Nucl Med. 1999;40:1556–62.

    CAS  PubMed  Google Scholar 

  28. Neirinckx RD, Burke JF, Harrison RC, Forster AM, Andersen AR, Lassen NA. The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione. J Cereb Blood Flow Metab. 1988;8:S4–12.

    Article  CAS  PubMed  Google Scholar 

  29. Lassen NA, Andersen AR, Friberg L, Paulson OB. The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab. 1988;8:S13–22.

    Article  CAS  PubMed  Google Scholar 

  30. Andersen AR, Friberg HH, Schmidt JF, Hasselbalch SG. Quantitative measurements of cerebral blood flow using SPECT and [99mTc]-d,l-HM-PAO compared to xenon-133. J Cereb Blood Flow Metab. 1988;8:S69–81.

    Article  CAS  PubMed  Google Scholar 

  31. Smolinski L, Czlonkowska A. Cerebral vasomotor reactivity in neurodegenerative diseases. Neurol Neurochir Pol. 2016;50:455–62.

    PubMed  Google Scholar 

  32. Apostolova I, Lindenau M, Fiehler J, Heese O, Wilke F, Clausen M, Stodieck S, Buchert R. Detection of a possible epilepsy focus in a preoperated patient by perfusion SPECT and computer-aided subtraction analysis. Nuklearmedizin. 2008;47:N65–8.

    CAS  PubMed  Google Scholar 

  33. Yonas H, Smith HA, Durham SR, Pentheny SL, Johnson DW. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg. 1993;79:483–9.

    Article  CAS  PubMed  Google Scholar 

  34. Klijn CJ, Kappelle LJ, Tulleken CA, van Gijn J. Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke. 1997;28:2084–93.

    Article  CAS  PubMed  Google Scholar 

  35. Eicker SO, Turowski B, Heiroth HJ, Steiger HJ, Hanggi D. A comparative study of perfusion CT and 99m Tc-HMPAO SPECT measurement to assess cerebrovascular reserve capacity in patients with internal carotid artery occlusion. Eur J Med Res. 2011;16:484–90.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gibbs JM, Wise RJ, Leenders KL, Jones T. Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet. 1984;1:310–4.

    Article  CAS  PubMed  Google Scholar 

  37. Lee M, Zaharchuk G, Guzman R, Achrol A, Bell-Stephens T, Steinberg GK. Quantitative hemodynamic studies in moyamoya disease: a review. Neurosurg Focus. 2009;26:E5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Settakis G, Molnar C, Kerenyi L, Kollar J, Legemate D, Csiba L, Fulesdi B. Acetazolamide as a vasodilatory stimulus in cerebrovascular diseases and in conditions affecting the cerebral vasculature. Eur J Neurol. 2003;10:609–20.

    Article  CAS  PubMed  Google Scholar 

  39. Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg. 1995;21:338–44. discussion 344-335

    Article  CAS  PubMed  Google Scholar 

  40. Grubb RL Jr, Powers WJ, Clarke WR, Videen TO, Adams HP Jr, Derdeyn CP. Surgical results of the carotid occlusion surgery study. J Neurosurg. 2013;118:25–33.

    Article  PubMed  Google Scholar 

  41. Yamada S, Oki K, Itoh Y, Kuroda S, Houkin K, Tominaga T, Miyamoto S, Hashimoto N, Suzuki N, Research Committee on Spontaneous Occlusion of Circle of W. Effects of surgery and antiplatelet therapy in ten-year follow-up from the registry study of research committee on moyamoya disease in Japan. J Stroke Cerebrovasc Dis. 2016;25:340–9.

    Article  PubMed  Google Scholar 

  42. Research Committee on the Pathology and Treatment of Spontaneous Occlusion of the Circle of Willis; Health Labour Sciences Research Grant for Research on Measures for Infractable Diseases. Guidelines for diagnosis and treatment of moyamoya disease (spontaneous occlusion of the circle of Willis). Neurol Med Chir. 2012;52:245–66.

    Article  Google Scholar 

  43. Pandey P, Steinberg GK. Neurosurgical advances in the treatment of moyamoya disease. Stroke. 2011;42:3304–10.

    Article  PubMed  Google Scholar 

  44. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29:193–207.

    Article  PubMed  Google Scholar 

  45. Bos A, Bergmann R, Strobel K, Hofheinz F, Steinbach J, den Hoff J. Cerebral blood flow quantification in the rat: a direct comparison of arterial spin labeling MRI with radioactive microsphere PET. EJNMMI Res. 2012;2:47.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wellmer J, Parpaley Y, von Lehe M, Huppertz HJ. Integrating magnetic resonance imaging postprocessing results into neuronavigation for electrode implantation and resection of subtle focal cortical dysplasia in previously cryptogenic epilepsy. Neurosurgery. 2010;66:187–94. discussion 194–185

    Article  PubMed  Google Scholar 

  47. Kemp BJ, Hruska CB, McFarland AR, Lenox MW, Lowe VJ. NEMA NU 2-2007 performance measurements of the Siemens Inveon preclinical small animal PET system. Phys Med Biol. 2009;54:2359–76.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang H, Bao Q, NT V, Silverman RW, Taschereau R, Berry-Pusey BN, Douraghy A, Rannou FR, Stout DB, Chatziioannou AF. Performance evaluation of PETbox: a low cost bench top preclinical PET scanner. Mol Imaging Biol. 2011;13(5):949–61.

    Article  PubMed  Google Scholar 

  49. Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 standard. J Nucl Med. 2005;46:2083–91.

    CAS  PubMed  Google Scholar 

  50. Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, Macapinlac H, National Electrical Manufacturers A. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med. 2004;45:1734–42.

    PubMed  Google Scholar 

  51. Beekman F, van der Have F. The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging. 2007;34:151–61.

    Article  PubMed  Google Scholar 

  52. Sharma S, Ebadi M. SPECT neuroimaging in translational research of CNS disorders. Neurochem Int. 2008;52:352–62.

    Article  CAS  PubMed  Google Scholar 

  53. Branderhorst W, Vastenhouw B, van der Have F, Blezer EL, Bleeker WK, Beekman FJ. Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging. 2011;38(3):552–61.

    Article  PubMed  Google Scholar 

  54. Apostolova I, Wunder A, Dirnagl U, Michel R, Stemmer N, Lukas M, Derlin T, Gregor-Mamoudou B, Goldschmidt J, Brenner W, Buchert R. Brain perfusion SPECT in the mouse: normal pattern according to gender and age. NeuroImage. 2012;63:1807–17.

    Article  PubMed  Google Scholar 

  55. Apostolova I, Niedzielska D, Derlin T, Koziolek EJ, Amthauer H, Salmen B, Pahnke J, Brenner W, Mautner VF, Buchert R. Perfusion single photon emission computed tomography in a mouse model of neurofibromatosis type 1: towards a biomarker of neurologic deficits. J Cereb Blood Flow Metab. 2015;35:1304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jodal L, Le Loirec C, Champion C. Positron range in PET imaging: an alternative approach for assessing and correcting the blurring. Phys Med Biol. 2012;57:3931–43.

    Article  CAS  PubMed  Google Scholar 

  57. Partridge M, Spinelli A, Ryder W, Hindorf C. The effect of β+ energy on performance of a small animal PET camera. Nucl Instrum Methods Phys Res A. 2006;568:933–6.

    Article  CAS  Google Scholar 

  58. Lange C, Apostolova I, Lukas M, Huang KP, Hofheinz F, Gregor-Mamoudou B, Brenner W, Buchert R. Performance evaluation of stationary and semi-stationary acquisition with a non-stationary small animal multi-pinhole SPECT system. Mol Imaging Biol. 2014;16:311–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Buchert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Buchert, R. (2018). Radionuclide Imaging of Cerebral Blood Flow. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics