Skip to main content

Quantification of Myocardial Effective Transverse Relaxation Time with Magnetic Resonance at 7.0 Tesla for a Better Understanding of Myocardial (Patho)physiology

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Cardiovascular magnetic resonance imaging (CMR) has become an indispensable tool in the assessment of cardiac structure, morphology, and function. CMR also affords myocardial tissue characterization and probing of cardiac physiology, both being in the focus of ongoing research. These developments are fueled by the move to ultrahigh magnetic field strengths, which permits enhanced sensitivity and spatial resolution that help to overcome limitations of current clinical MR systems.

This chapter reviews the potential of using CMR as a means to assess physiology in the heart muscle by exploiting quantification of myocardial effective transverse relaxation times (T 2 *) for the better understanding of myocardial (patho)physiology. For this purpose the basic principles of T 2 * mapping, the biophysical mechanisms governing T 2 *, and Otherwise this implies that all preclinical applications of myocardial T 2 * mapping ever done are being presented which is not the case. Technological challenges and solutions for T 2 *-sensitized CMR at ultrahigh magnetic field strengths are discussed followed by a survey of acquisition techniques and post processing approaches. Preliminary results derived from myocardial T 2 * mapping of healthy subjects and in patients at 7.0 T are presented. A concluding section provides an outlook including future developments and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Where 1|ΔB| is the hypothetic magnetic field gradient without macroscopic contributions and 2|ΔB| the magnetic field gradient including macroscopic inhomogeneities

References

  1. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12. https://doi.org/10.1016/S0006-3495(93)81441-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wacker CM, Hartlep AW, Pfleger S, Schad LR, Ertl G, Bauer WR. Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent. J Am Coll Cardiol. 2003;41(5):834–40.

    Article  PubMed  Google Scholar 

  3. Friedrich M, Niendorf T, Schulz-Menger J. Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. ACC Curr J Rev. 2004;13(4):30.

    Article  Google Scholar 

  4. Jahnke C, Gebker R, Manka R, Schnackenburg B, Fleck E, Paetsch I. Navigator-gated 3D blood oxygen level–dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions. JACC Cardiovasc Imaging. 2010;3(4):375–84.

    Article  PubMed  Google Scholar 

  5. Karamitsos TD, Leccisotti L, Arnold JR, Recio-Mayoral A, Bhamra-Ariza P, Howells RK, Searle N, Robson MD, Rimoldi OE, Camici PG, Neubauer S, Selvanayagam JB. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease insights from cardiovascular magnetic resonance and positron emission tomography. Circ Cardiovasc Imaging. 2010;3(1):32–40.

    Article  PubMed  Google Scholar 

  6. Tsaftaris SA, Tang R, Zhou X, Li D, Dharmakumar R. Ischemic extent as a biomarker for characterizing severity of coronary artery stenosis with blood oxygen-sensitive MRI. J Magn Reson Imaging. 2012;35(6):1338–48.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wacker CM, Bock M, Hartlep AW, Beck G, van Kaick G, Ertl G, Bauer WR, Schad LR. Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: assessment using T*2 and T1 measurements. Magn Reson Med. 1999;41(4):686–95.

    Article  CAS  PubMed  Google Scholar 

  8. Vohringer M, Flewitt JA, Green JD, Dharmakumar R, Wang J Jr, Tyberg JV, Friedrich MG. Oxygenation-sensitive CMR for assessing vasodilator-induced changes of myocardial oxygenation. J Cardiovasc Magn Reson. 2010;12:20. https://doi.org/10.1186/1532-429X-12-20.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Utz W, Jordan J, Niendorf T, Stoffels M, Luft FC, Dietz R, Friedrich MG. Blood oxygen level-dependent MRI of tissue oxygenation: relation to endothelium-dependent and endothelium-independent blood flow changes. Arterioscler Thromb Vasc Biol. 2005;25(7):1408–13. https://doi.org/10.1161/01.ATV.0000170131.13683.d7.

    Article  CAS  PubMed  Google Scholar 

  10. Guensch DP, Fischer K, Flewitt JA, Friedrich MG. Impact of intermittent apnea on myocardial tissue oxygenation–a study using oxygenation-sensitive cardiovascular magnetic resonance. PLoS One. 2013;8(1):e53282. https://doi.org/10.1371/journal.pone.0053282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guensch DP, Fischer K, Flewitt JA, Friedrich MG. Myocardial oxygenation is maintained during hypoxia when combined with apnea–a cardiovascular MR study. Phys Rep. 2013;1(5):e00098.

    Google Scholar 

  12. Guensch DP, Fischer K, Flewitt JA, Yu J, Lukic R, Friedrich JA, Friedrich MG. Breathing manoeuvre-dependent changes in myocardial oxygenation in healthy humans. Eur Heart J Cardiovasc Imaging. 2014;15(4):409–14. https://doi.org/10.1093/ehjci/jet171.

    Article  PubMed  Google Scholar 

  13. Fischer K, Guensch DP, Shie N, Lebel J, Friedrich MG. Breathing maneuvers as a vasoactive stimulus for detecting inducible myocardial ischemia - an experimental cardiovascular magnetic resonance study. PLoS One. 2016;11(10):e0164524. https://doi.org/10.1371/journal.pone.0164524.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guensch DP, Nadeshalingam G, Fischer K, Stalder AF, Friedrich MG. The impact of hematocrit on oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2016;18(1):42. https://doi.org/10.1186/s12968-016-0262-1.

    Article  PubMed  PubMed Central  Google Scholar 

  15. He T. Cardiovascular magnetic resonance T2* for tissue iron assessment in the heart. Quant Imaging Med Surg. 2014;4(5):407–12. https://doi.org/10.3978/j.issn.2223-4292.2014.10.05.

    PubMed  PubMed Central  Google Scholar 

  16. Anderson L, Holden S, Davis B, Prescott E, Charrier C, Bunce N, Firmin D, Wonke B, Porter J, Walker J. Cardiovascular T 2-star(T 2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mavrogeni S. Evaluation of myocardial iron overload using magnetic resonance imaging. Blood Transfus. 2009;7(3):183.

    PubMed  PubMed Central  Google Scholar 

  18. Carpenter J-P, He T, Kirk P, Roughton M, Anderson LJ, de Noronha SV, Sheppard MN, Porter JB, Walker JM, Wood JC, Galanello R, Forni G, Catani G, Matta G, Fucharoen S, Fleming A, House M, Black G, Firmin D, St Pierre T, Penell D. On T2* magnetic resonance and cardiac iron. Circulation. 2011;123(14):1519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Friedrich MG, Karamitsos TD. Oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013;15:43. https://doi.org/10.1186/1532-429X-15-43.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetization, relaxation and the bloch equation. In: Magnetic resonance imaging - physical principles and sequence design. 1 edn. Wiley, New York, pp 51–64

    Google Scholar 

  21. Zhao JM, Clingman CS, Närväinen MJ, Kauppinen RA, van Zijl P. Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med. 2007;58(3):592–7.

    Article  PubMed  Google Scholar 

  22. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown RW, Cheng Y-CN, Haacke EM, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. Hoboken: Wiley; 2014.

    Book  Google Scholar 

  24. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. Amsterdam: Elsevier; 2004.

    Google Scholar 

  25. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci. 1992;89(13):5951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, Ertl G. Theory of the BOLD effect in the capillary region: an analytical approach for the determination of T2 in the capillary network of myocardium. Magn Reson Med. 1999;41(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  27. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med. 1994;32(6):749–63.

    Article  CAS  PubMed  Google Scholar 

  28. Christen T, Lemasson B, Pannetier N, Farion R, Segebarth C, Rémy C, Barbier EL. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed. 2011;24(4):393–403.

    PubMed  Google Scholar 

  29. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JJ. Water proton MR properties of human blood at 1.5 tesla: magnetic susceptibility, T1, T2, T2*, and non-Lorentzian signal behavior. Magn Reson Med. 2001;45(4):533–42.

    Article  CAS  PubMed  Google Scholar 

  30. Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol. 2015;213(1):19–38.

    Article  CAS  Google Scholar 

  31. Meloni A, Hezel F, Positano V, Keilberg P, Pepe A, Lombardi M, Niendorf T. Detailing magnetic field strength dependence and segmental artifact distribution of myocardial effective transverse relaxation rate at 1.5, 3.0, and 7.0 T. Magn Reson Med. 2014;71(6):2224–30. https://doi.org/10.1002/mrm.24856.

    Article  CAS  PubMed  Google Scholar 

  32. Hezel F, Thalhammer C, Waiczies S, Schulz-Menger J, Niendorf T. High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 tesla: an ultrahigh field magnetic resonance feasibility study. PLoS One. 2012;7(12):e52324. https://doi.org/10.1371/journal.pone.0052324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D. Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology. 2012;263(1):77–85. https://doi.org/10.1148/radiol.11110347.

    Article  PubMed  Google Scholar 

  34. Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging (MRI). Acta Acust Acust. 2008;94:148–55.

    Article  Google Scholar 

  35. Frauenrath T, Hezel F, Heinrichs U, Kozerke S, Utting JF, Kob M, Butenweg C, Boesiger P, Niendorf T. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 tesla, 3.0 tesla and 7.0 tesla using an MR-stethoscope. Investig Radiol. 2009;44(9):539–47. https://doi.org/10.1097/RLI.0b013e3181b4c15e.

    Article  Google Scholar 

  36. Frauenrath T, Hezel F, Renz W, d’Orth Tde G, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz Menger J, Niendorf T. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 tesla. J Cardiovasc Magn Reson. 2010;12:67. https://doi.org/10.1186/1532-429X-12-67.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dieringer MA, Renz W, Lindel T, Seifert F, Frauenrath T, von Knobelsdorff-Brenkenhoff F, Waiczies H, Hoffmann W, Rieger J, Pfeiffer H, Ittermann B, Schulz-Menger J, Niendorf T. Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson Imaging. 2011;33(3):736–41. https://doi.org/10.1002/jmri.22451.

    Article  PubMed  Google Scholar 

  38. Graessl A, Winter L, Thalhammer C, Renz W, Kellman P, Martin C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Design, evaluation and application of an eight channel transmit/receive coil array for cardiac MRI at 7.0 T. Eur J Radiol. 2013;82(5):752–9. https://doi.org/10.1016/j.ejrad.2011.08.002.

    Article  Google Scholar 

  39. Thalhammer C, Renz W, Winter L, Hezel F, Rieger J, Pfeiffer H, Graessl A, Seifert F, Hoffmann W, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Kellman P, Niendorf T. Two-dimensional sixteen channel transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and application. J Magn Reson Imaging. 2012;36(4):847–57. https://doi.org/10.1002/jmri.23724.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Graessl A, Renz W, Hezel F, Dieringer MA, Winter L, Oezerdem C, Rieger J, Kellman P, Santoro D, Lindel TD, Frauenrath T, Pfeiffer H, Niendorf T. Modular 32-channel transceiver coil array for cardiac MRI at 7.0T. Magn Reson Med. 2014;72(1):276–90. https://doi.org/10.1002/mrm.24903.

    Article  PubMed  Google Scholar 

  41. Oezerdem C, Winter L, Graessl A, Paul K, Els A, Weinberger O, Rieger J, Kuehne A, Dieringer M, Hezel F, Voit D, Frahm J, Niendorf T. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla. Magn Reson Med. 2016;75(6):2553–65. https://doi.org/10.1002/mrm.25840.

    Article  PubMed  Google Scholar 

  42. Snyder CJ, DelaBarre L, Metzger GJ, van de Moortele PF, Akgun C, Ugurbil K, Vaughan JT. Initial results of cardiac imaging at 7 Tesla. Magn Reson Med. 2009;61(3):517–24. https://doi.org/10.1002/mrm.21895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adriany G, Ritter J, Vaughan JT, Ugurbil K, Moortele PF. Experimental verification of enhanced B1 Shim performance with a Z-encoding RF coil array at 7 Tesla. In: Proc. Intl. Soc. Mag. Reson. Med., Stockholm, Sweden; 2010. p. 3831.

    Google Scholar 

  44. Santoro D, von Samson-Himmelstjerna F, Carinci F, Hezel F, Dieringer MA, Niendorf T. Cardiac Triggered B1+ mapping using Bloch Siegert in the heart at 3T. In: Proc Intl. Soc. Mag. Reson. Med.; 2012. p. 3840.

    Google Scholar 

  45. Lindel T, Greiser A, Waxmann P, Dietterle M, Seifert F, U. Fontius, Renz W, Dieringer M, Frauenrath T, Schulz Menger J, Niendorf T, Ittermann B. Cardiac CINE MRI at 7 T using a transmit array. In: Proc. Intl. Soc. Mag. Reson. Med.; 2012. p. 1227.

    Google Scholar 

  46. Schmitter S, Wu X, Uğurbil K, de Moortele V. Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 tesla. Magn Reson Med. 2015;74(5):1291–305.

    Article  PubMed  Google Scholar 

  47. Schmitter S, Moeller S, Wu X, Auerbach EJ, Metzger GJ, Van de Moortele PF, Ugurbil K. Simultaneous multislice imaging in dynamic cardiac MRI at 7T using parallel transmission. Magn Reson Med. 2016;77(3):1010–20. https://doi.org/10.1002/mrm.26180.

    Article  PubMed  Google Scholar 

  48. Versluis MJ, Tsekos N, Smith NB, Webb AG. Simple RF design for human functional and morphological cardiac imaging at 7tesla. J Magn Reson. 2009;200(1):161–6. https://doi.org/10.1016/j.jmr.2009.06.014.

    Article  CAS  PubMed  Google Scholar 

  49. Winter L, Kellman P, Renz W, Grassl A, Hezel F, Thalhammer C, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Comparison of three multichannel transmit/receive radiofrequency coil configurations for anatomic and functional cardiac MRI at 7.0T: implications for clinical imaging. Eur Radiol. 2012;22(10):2211–20. https://doi.org/10.1007/s00330-012-2487-1.

    Article  PubMed  Google Scholar 

  50. Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K. Whole-body imaging at 7T: preliminary results. Magn Reson Med. 2009;61(1):244–8. https://doi.org/10.1002/mrm.21751.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Maderwald S, Orzada S, Schaefer LC, Bitz AK, Brote I, Kraff O, Theysohn JM, Ladd ME, Ladd SC, Quick HH 7T human in vivo cardiac imaging with an 8-channel transmit/receive array. In: Proc. Intl. Soc. Mag. Reson. Med., Honolulu, Hawaii, USA; 2009. p. 822.

    Google Scholar 

  52. van den Bergen B, Klomp DW, Raaijmakers AJ, de Castro CA, Boer VO, Kroeze H, Luijten PR, Lagendijk JJ, van den Berg CA. Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR Biomed. 2011;24(4):358–65. https://doi.org/10.1002/nbm.1599.

    PubMed  Google Scholar 

  53. Ipek O, Raaijmakers AJ, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip. Phys Med Biol. 2012;57(2):343–55. https://doi.org/10.1088/0031-9155/57/2/343.

    Article  CAS  PubMed  Google Scholar 

  54. Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann R, Graessl A, Wust P, Niendorf T. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 tesla and proof-of-concept at 7.0 tesla. PLoS One. 2013;8(4):e61661. https://doi.org/10.1371/journal.pone.0061661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raaijmakers AJ, Ipek O, Klomp DW, Possanzini C, Harvey PR, Lagendijk JJ, van den Berg CA. Design of a radiative surface coil array element at 7 T: the single-side adapted dipole antenna. Magn Reson Med. 2011;66(5):1488–97. https://doi.org/10.1002/mrm.22886.

    Article  CAS  PubMed  Google Scholar 

  56. Ipek O, Raaijmakers AJ, Lagendijk JJ, Luijten PR, van den Berg CA. Intersubject local SAR variation for 7T prostate MR imaging with an eight-channel single-side adapted dipole antenna array. Magn Reson Med. 2014;71(4):1559–67. https://doi.org/10.1002/mrm.24794.

    Article  PubMed  Google Scholar 

  57. Erturk MA, Raaijmakers AJ, Adriany G, Ugurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 tesla body MRI. Magn Reson Med. 2016;77(2):884–94. https://doi.org/10.1002/mrm.26153.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raaijmakers AJE, Italiaander M, Voogt IJ, Luijten PR, Hoogduin JM, Klomp DWJ, van den Berg CAT. The fractionated dipole antenna: a new antenna for body imaging at 7 tesla. Magn Reson Med. 2016;75(3):1366–74. https://doi.org/10.1002/mrm.25596.

    Article  PubMed  Google Scholar 

  59. Aussenhofer SA, Webb AG. An eight-channel transmit/receive array of TE01 mode high permittivity ceramic resonators for human imaging at 7T. J Magn Reson. 2014;243:122–9. https://doi.org/10.1016/j.jmr.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  60. Keith GA, Rodgers CT, Hess AT, Snyder CJ, Vaughan JT, Robson MD. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators. Magn Reson Med. 2015;73(6):2390–7.

    Article  PubMed  Google Scholar 

  61. Togawa T, Okai O, Oshima M. Observation of blood flow E.M.F. in externally applied strong magnetic field by surface electrodes. Med Biol Eng. 1967;5(2):169–70.

    Article  CAS  PubMed  Google Scholar 

  62. Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ. Preliminary report on in vivo coronary MRA at 3 tesla in humans. Magn Reson Med. 2002;48(3):425–9. https://doi.org/10.1002/mrm.10240.

    Article  PubMed  Google Scholar 

  63. Lanzer P, Barta C, Botvinick EH, Wiesendanger HU, Modin G, Higgins CB. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology. 1985;155(3):681–6.

    Article  CAS  PubMed  Google Scholar 

  64. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med. 1999;42(2):361–70. https://doi.org/10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  65. Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging. 2000;12(5):678–88. https://doi.org/10.1002/1522-2586(200011)12:5<678::aid-jmri4>3.0.co;2-5.

    Article  CAS  PubMed  Google Scholar 

  66. Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, Butenweg C, Goemmel A, Utting JF, Schulz-Menger J, Niendorf T. Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol. 2010;20(6):1344–55. https://doi.org/10.1007/s00330-009-1676-z.

    Article  PubMed  Google Scholar 

  67. Brandts A, Westenberg JJ, Versluis MJ, Kroft LJ, Smith NB, Webb AG, de Roos A. Quantitative assessment of left ventricular function in humans at 7 T. Magn Reson Med. 2010;64(5):1471–7. https://doi.org/10.1002/mrm.22529.

    Article  PubMed  Google Scholar 

  68. Heinrichs U, Utting JF, Frauenrath T, Hezel F, Krombach GA, Hodenius MA, Kozerke S, Niendorf T. Myocardial T2 * mapping free of distortion using susceptibility-weighted fast spin-echo imaging: a feasibility study at 1.5 T and 3.0 T. Magn Reson Med. 2009;62(3):822–8. https://doi.org/10.1002/mrm.22054.

    Article  PubMed  Google Scholar 

  69. Fuchs K, Hezel F, Winter L, Oezerdem C, Graessl A, Dieringer M, Kraus O, Niendorf T. Feasibility of cardiac fast spin echo imaging at 7.0 T using a two-dimensional 16 channel array of bowtie transceivers. In: Proc. Intl. Soc. Mag. Reson. Med. 21, Salt Lake City, USA; 2013. p. 1413.

    Google Scholar 

  70. Norris DG, Boernert P, Reese T, Leibfritz D. On the application of ultra-fast rare experiments. Magn Reson Med. 1992;27(1):142–64.

    Article  CAS  PubMed  Google Scholar 

  71. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94(3):630–8.

    Article  CAS  Google Scholar 

  72. Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29(8):688–91. https://doi.org/10.1063/1.1716296.

    Article  CAS  Google Scholar 

  73. Schick F. SPLICE: sub-second diffusion-sensitive MR imaging using a modified fast spin-echo acquisition mode. Magn Reson Med. 1997;38(4):638–44.

    Article  CAS  PubMed  Google Scholar 

  74. Haacke E, Brown R, Thompson M, Venkatesan R, Bernstein M, King K, Zhou X. Magnetic resonance imaging - physical principles and sequence design. New York: Wiley; 1999.

    Google Scholar 

  75. Robinson S, Schodl H, Trattnig S. A method for unwrapping highly wrapped multi-echo phase images at very high field: UMPIRE. Magn Reson Med. 2013;72:80–92. https://doi.org/10.1002/mrm.24897.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jaffer FA, Wen H, Balaban RS, Wolff SD. A method to improve the BO homogeneity of the heart in vivo. Magn Reson Med. 1996;36(3):375–83.

    Article  CAS  PubMed  Google Scholar 

  77. Reeder SB, Faranesh AZ, Boxerman JL, McVeigh ER. In vivo measurement of T2* and field inhomogeneity maps in the human heart at 1.5 T. Magn Reson Med. 1998;39(6):988–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shah S, Kellman P, Greiser A, Weale PJ, Zuehlsdorff S, Jerecic R. Rapid fieldmap estimation for cardiac shimming. In: Intl. Soc. Mag. Reson. Med. 17, Hawai, USA; 2009. p. 565.

    Google Scholar 

  79. Serradas Duarte T, Huelnhagen T, Niendorf T. Assessment of myocardial B0 over the cardiac cycle at 7.0T: implications for susceptibility-based cardiac MR techniques. In: Proc. Intl. Soc. Mag. Reson. Med. 24, Singapore; 2016. p. 2541.

    Google Scholar 

  80. Huelnhagen T, Hezel F, Serradas Duarte T, Pohlmann A, Oezerdem C, Flemming B, Seeliger E, Prothmann M, Schulz-Menger J, Niendorf T. Myocardial effective transverse relaxation time T2* correlates with left ventricular wall thickness: a 7.0 T MRI study. Magn Reson Med. 2017;77:2381–9. https://doi.org/10.1002/mrm.26312.

    Article  PubMed  Google Scholar 

  81. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.

    Article  PubMed  Google Scholar 

  82. Serradas Duarte T. Detailing myocardial B0 across the cardiac cycle at UHF: B0 assessment and implications for susceptibility-based CMR techniques. Lisbon: Universidade Nova de Lisboa; 2016.

    Google Scholar 

  83. Kelley CT. Iterative methods for optimization, vol. 18. Siam: SIAM Frontiers in Applied Mathematics; 1999.

    Book  Google Scholar 

  84. Sandino CM, Kellman P, Arai AE, Hansen MS, Xue H. Myocardial T2* mapping: influence of noise on accuracy and precision. J Cardiovasc Magn Reson. 2015;17(1):7. https://doi.org/10.1186/s12968-015-0115-3.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Manjon JV, Coupe P, Marti-Bonmati L, Collins DL, Robles M. Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging. 2010;31(1):192–203. https://doi.org/10.1002/jmri.22003.

    Article  PubMed  Google Scholar 

  86. Feng Y, He T, Feng M, Carpenter JP, Greiser A, Xin X, Chen W, Pennell DJ, Yang GZ, Firmin DN. Improved pixel-by-pixel MRI R2* relaxometry by nonlocal means. Magn Reson Med. 2014;72(1):260–8. https://doi.org/10.1002/mrm.24914.

    Article  PubMed  Google Scholar 

  87. Huelnhagen T, Pohlmann A, Niendorf T. Improving T2* mapping accuracy by spatially adaptive non local means noise filtering. In: Proc. Intl. Soc. Mag. Reson. Med., vol. 23, Toronto, Canada; 2015. p. 3753.

    Google Scholar 

  88. Guyton AC, Hall JE (2000) Muscle blood flow and cardiac output during exercise; the coronary circulation and ischemic heart disease. In: Guyton and Hall textbook of medical physiology. 10 edn. Saunders: Philadelphia, pp 223-234

    Google Scholar 

  89. Schmidt RF, Lang F, Heckmann M (2010) Herzmechanik. In: Physiologie des Menschen: Mit Pathophysiologie. 31 edn. Springer, Heidelberg, pp 539-564

    Google Scholar 

  90. Schmidt RF, Lang F, Heckmann M (2010) Herzstoffwechsel und Kroronardurchblutung. In: Physiologie des Menschen: Mit Pathophysiologie. 31 edn. Springer, Heidelberg, pp 565-571

    Google Scholar 

  91. Abdel-Aty H, Cocker M, Strohm O, Filipchuk N, Friedrich MG. Abnormalities in T2-weighted cardiovascular magnetic resonance images of hypertrophic cardiomyopathy: regional distribution and relation to late gadolinium enhancement and severity of hypertrophy. J Magn Reson Imaging. 2008;28(1):242–5. https://doi.org/10.1002/jmri.21381.

    Article  PubMed  Google Scholar 

  92. Johansson B, Mörner S, Waldenström A, Stål P. Myocardial capillary supply is limited in hypertrophic cardiomyopathy: a morphological analysis. Int J Cardiol. 2008;126(2):252–7.

    Article  PubMed  Google Scholar 

  93. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349(11):1027–35.

    Article  CAS  PubMed  Google Scholar 

  94. Reichenbach JR, Haacke EM. High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed. 2001;14(7–8):453–67.

    Article  CAS  PubMed  Google Scholar 

  95. Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore RE, Wedeen VJ. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med. 1995;34(6):786–91.

    Article  CAS  PubMed  Google Scholar 

  96. MT W, Tseng WY, MY S, Liu CP, Chiou KR, Wedeen VJ, Reese TG, Yang CF. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation. 2006;114(10):1036–45. https://doi.org/10.1161/CIRCULATIONAHA.105.545863.

    Article  Google Scholar 

  97. Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging. 2008;27(5):1037–45. https://doi.org/10.1002/jmri.21345.

    Article  PubMed  Google Scholar 

  98. Poulo L, Alon L, Deniz C, Haefner R, Sodickson D, Stoeckel B, Zhu Y. A 32-channel parallel exciter/amplifier transmit system for 7T imaging. In: ISMRM (ed) Proc. Intl. Soc. Mag. Reson. Med., vol. 19; 2011. p. 1867.

    Google Scholar 

  99. Lattanzi R, Sodickson DK. Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights. Magn Reson Med. 2012;68(1):286–304. https://doi.org/10.1002/mrm.23198.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thoralf Niendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huelnhagen, T., Serradas-Duarte, T., Hezel, F., Paul, K., Niendorf, T. (2018). Quantification of Myocardial Effective Transverse Relaxation Time with Magnetic Resonance at 7.0 Tesla for a Better Understanding of Myocardial (Patho)physiology. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics