Skip to main content

Fundamentals of X-Ray Computed Tomography: Acquisition and Reconstruction

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Computed tomography (CT) provides quantitative assessment of tissue properties by a unique linear relationship between signal and CT contrast agents. Clinically, CT is widely used in the acute setting but also for chronic conditions. High radiation dose and the potential for contrast-induced acute kidney injury are the two major challenges for CT. This chapter briefly summarizes the clinical use of CT and presents the physical and technical basis of CT data acquisition and image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  PubMed  Google Scholar 

  2. Ambrose J, Hounsfield G. Computerized transverse axial tomography. Br J Radiol. 1973;46:148–9.

    Article  CAS  PubMed  Google Scholar 

  3. Cormack AM. Nobel award address. Early two-dimensional reconstruction and recent topics stemming from it. Med Phys. 1980;7:277–82.

    Article  CAS  PubMed  Google Scholar 

  4. Cormack AM. Representation of a function by its line integrals, with some radiological applications. J Appl Phys. 1964;35:2908–13.

    Article  Google Scholar 

  5. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176:181–3.

    Article  CAS  PubMed  Google Scholar 

  6. Schuetz GM, Schlattmann P, Dewey M. Avoiding overestimation of clinical performance by applying a 3x2 table with an intention-to-diagnose approach: an exemplary meta-analytical evaluation of coronary CT angiography studies. BMJ. 2012;345:e6717.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med. 2010;152:167–77.

    Article  PubMed  Google Scholar 

  8. Kachelriess M, Kalender WA. Electrocardiogram-correlated image reconstruction from subsecond spiral computed tomography scans of the heart. Med Phys. 1998;25:2417–31.

    Article  CAS  PubMed  Google Scholar 

  9. Dewey M, Rief M, Martus P, et al. Evaluation of computed tomography in patients with atypical angina or chest pain clinically referred for invasive coronary angiography: randomised controlled trial. BMJ. 2016;355:i5441.

    Article  PubMed  PubMed Central  Google Scholar 

  10. EC. Medical radiation exposure of the European population; 2014.

    Google Scholar 

  11. Kalender W. CT: John Wiley & Sons; 2011.

    Google Scholar 

  12. NICE. CG 95 2016.

    Google Scholar 

  13. Moschovitis A, Cook S, Meier B. Percutaneous coronary interventions in Europe in 2006. EuroIntervention. 2010;6:189–94.

    Article  PubMed  Google Scholar 

  14. Williams MC, Hunter A, Shah AS, et al. Use of coronary computed tomographic angiography to guide management of patients with coronary disease. J Am Coll Cardiol. 2016;67:1759–68.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Field JK, Devaraj A, Duffy SW, Baldwin DR. CT screening for lung cancer: is the evidence strong enough? Lung Cancer. 2016;91:29–35.

    Article  CAS  PubMed  Google Scholar 

  16. Mauchley DC, Mitchell JD. Current estimate of costs of lung cancer screening in the United States. Thorac Surg Clin. 2015;25:205–15.

    Article  PubMed  Google Scholar 

  17. Mulshine JL, D’Amico TA. Issues with implementing a high-quality lung cancer screening program. CA Cancer J Clin. 2014;64:352–63.

    Article  PubMed  Google Scholar 

  18. Smieliauskas F, MacMahon H, Salgia R, Shih YC. Geographic variation in radiologist capacity and widespread implementation of lung cancer CT screening. J Med Screen. 2014;21:207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kamel M, Stiles B, Altorki NK. Clinical issues in the surgical management of screen-identified lung cancers. Oncology. 2015;29:944–9.

    PubMed  Google Scholar 

  20. Aberle DR, DeMello S, Berg CD, et al. Results of the two incidence screenings in the national lung screening trial. N Engl J Med. 2013;369:920–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Black WC, Gareen IF, Soneji SS, et al. Cost-effectiveness of CT screening in the national lung screening trial. N Engl J Med. 2014;371:1793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aberle DR, Adams AM, National Lung Screening Trial Research Team, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  PubMed  Google Scholar 

  23. Church TR, Black WC, National Lung Screening Trial Research Team, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368:1980–91.

    Article  PubMed  Google Scholar 

  24. Kovalchik SA, Tammemagi M, Berg CD, et al. Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med. 2013;369:245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  26. ACR. ACR manual on contrast media. Version 10.1; 2015.

    Google Scholar 

  27. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.

    Article  PubMed  Google Scholar 

  28. IMV. International marketing ventures. CT market outlook report. Des Plaines, IL; 2014.

    Google Scholar 

  29. European Commission (EC). Radiation protection No. 180. Medical radiation exposure of the European population. Part 1/2. Brussels, BE: directorate-general for energy. Directorate D—nuclear safety & fuel cycle. Unit D3—radiation protection; 2014.

    Google Scholar 

  30. Kachelriess M. Iterative reconstruction techniques: what do they mean for cardiac CT? Curr Cardiovasc Imaging Rep. 2013;6:268–81.

    Article  Google Scholar 

Download references

Acknowledgment

Professor Dewey would like to thank Drs. Feger, Rief, and Zimmermann for excellent support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Kachelrieß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dewey, M., Kachelrieß, M. (2018). Fundamentals of X-Ray Computed Tomography: Acquisition and Reconstruction. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics