Skip to main content

Photoacoustic Imaging: Principles and Applications

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Photoacoustic (PA) imaging is an emerging imaging technology with potential for preclinical biomedical research and clinical applications. PA imaging, which relies on the generation of broadband acoustic waves via the absorption of intensity-modulated light in tissue, offers the combination of strong optical contrast and high spatial resolution provided by ultrasound. For excitation wavelengths in the visible and near-infrared region, image contrast is predominately due to haemoglobin. Exogenous contrast agents, such as dyes or genetically expressed absorbers, can be used to obtain targeted molecular contrast. Over the past decade, PA imaging has rapidly evolved into different microscopy and tomography modalities, while novel methodologies have led to a variety of exciting applications. This chapter explains the basic principles of PA imaging, its implementation in the different modalities and provides examples of applications to morphological, functional and molecular imaging. Furthermore, the challenge of recovering quantitative information from PA image data sets is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Thermal confinement requires the heating pulse to be much shorter than thermal relaxation of the source. Since thermal diffusion in tissue is orders of magnitude slower than typical excitation pulse durations, thermal confinement is not a strongly limiting factor in PA imaging. Stress confinement requires the heating pulse duration to be shorter than the time it takes the photoacoustic wave to propagate across the heated source region. Let us assume that the excitation laser provides optical pulses of t p = 10 ns duration and that photoacoustic waves are excited in a water-based medium, i.e. the speed of sound is c s = 1500 ms−1 = 1.5 μm ns−1. Within the duration of the excitation pulse, an acoustic wave will therefore travel a distance of s = c s t p = 1.5 μm ns−1 × 10 ns = 15 μm. In terms of photoacoustic imaging, this figure also approximates the maximum spatial resolution that can be achieved with this pulse duration.

References

  1. Beard P. Biomedical photoacoustic imaging. Interface Focus. 2011;1:602–31.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laufer J, et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J Biomed Opt. 2012;17:56016.

    Article  Google Scholar 

  3. Cox B, Laufer JG, Arridge SR, Beard PC. Quantitative spectroscopic photoacoustic imaging: a review. J Biomed Opt. 2012;17:61202.

    Article  Google Scholar 

  4. Niederhauser JJ, Frauchiger D, Weber HP, Frenz M. Real-time optoacoustic imaging using a Schlieren transducer. Appl Phys Lett. 2002;81:571.

    Article  CAS  Google Scholar 

  5. Nuster R, Slezak P, Paltauf G. High resolution three-dimensional photoacoutic tomography with CCD-camera based ultrasound detection. Biomed Opt Express. 2014;5:2635.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nuster R, et al. Photoacoustic microtomography using optical interferometric detection. J Biomed Opt. 2010;15:21307.

    Article  Google Scholar 

  7. Paltauf G, Nuster R. Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction. J Biomed Opt. 2014;19:26014.

    Article  Google Scholar 

  8. Zhang C, Ling T, Chen S, Guo LJ. Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging. ACS Photonics. 2014;1:1093–8.

    Article  CAS  Google Scholar 

  9. Li H, Dong B, Zhang Z, Zhang HF, Sun C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep. 2014;4:4496.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hsieh B-Y, Chen S-L, Ling T, Guo LJ, Li P-C. All-optical scanhead for ultrasound and photoacoustic dual-modality imaging. Opt Express. 2012;20:1588.

    Article  PubMed  Google Scholar 

  11. Hsieh B-Y, Chen S-L, Ling T, Guo LJ, Li P-C. All-optical scanhead for ultrasound and photoacoustic imaging—imaging mode switching by dichroic filtering. Photo-Dermatology. 2014;2:39–46.

    Google Scholar 

  12. Ling T, Chen S-L, Guo LJ. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators. Appl Phys Lett. 2011;98:204103.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen S-L, et al. Miniaturized all-optical photoacoustic microscopy based on microelectromechanical systems mirror scanning. Opt Lett. 2012;37:4263–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rousseau G, Blouin A, Monchalin J. Non-contact photoacoustic tomography and ultrasonography for tissue imaging. Biomed Opt Express. 2012;3:3233–5.

    Article  Google Scholar 

  15. Rousseau G, Monchalin J, Gauthier B, Blouin A. Non-contact biomedical photoacoustic and ultrasound imaging. J Biomed Opt. 2012;17:61217.

    Article  Google Scholar 

  16. Zhang E, Laufer J, Beard P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl Opt. 2008;47:561–77.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang EZ, et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed Opt Express. 2011;2:2202–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chee R, Sampaleanu A, Rishi D, Zemp R. Top orthogonal to bottom electrode (TOBE) 2-D CMUT arrays for 3-D photoacoustic imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:1393–5.

    Article  PubMed  Google Scholar 

  19. Vaithilingam S, et al. Three-dimensional photoacoustic imaging using a two-dimensional CMUT array. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:2411–9.

    Article  PubMed  Google Scholar 

  20. Bhuyan A, et al. Integrated circuits for volumetric ultrasound imaging with 2-D CMUT arrays. IEEE Trans Biomed Circuits Syst. 2013;7:796–804.

    Article  PubMed  Google Scholar 

  21. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP. Photoacoustic angiography of the breast. Med Phys. 2010;37:6096.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol. 2003;21:803–6.

    Article  CAS  PubMed  Google Scholar 

  23. Xia J, Wang LV. Small-animal whole-body photoacoustic tomography: a review. IEEE Trans Biomed Eng. 2014;61:1380–9.

    Article  PubMed  Google Scholar 

  24. Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc. 2011;6:1121–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside. Annu Rev Biomed Eng. 2014;16:155–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao J, Wang LV. Sensitivity of photoacoustic microscopy. Photo-Dermatology. 2014;2:87–101.

    Google Scholar 

  27. Zhang C, Maslov K, Wang LV. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt Lett. 2010;35:3195–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang L, Zhang C, Wang LV. Grueneisen relaxation photoacoustic microscopy. Phys Rev Lett. 2014;113:1–5.

    Google Scholar 

  29. Yao J, Wang L, Li C, Zhang C, Wang LV. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. Phys Rev Lett. 2014;112:14302.

    Article  Google Scholar 

  30. Zhang C, Maslov K, Yao J, Wang LV. In vivo photoacoustic microscopy with 7.6-μm axial resolution using a commercial 125-MHz ultrasonic transducer. J Biomed Opt. 2012;17:116016.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yao J, Wang LV. Photoacoustic brain imaging: from microscopic to macroscopic scales. Neurophotonics. 2014;1:1877516.

    Article  PubMed  Google Scholar 

  32. Wang L, Maslov K, Xing W, Garcia-Uribe A, Wang L. Video-rate functional photoacoustic microscopy at depths. J Biomed Opt. 2012;17:106007.

    PubMed  PubMed Central  Google Scholar 

  33. Wang T, et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound. Appl Phys Lett. 2015;107:153702.

    Article  Google Scholar 

  34. Dong B, Chen S, Zhang Z, Sun C, Zhang HF. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Opt Lett. 2014;39:4372–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen S-L, Ling T, Guo LJ. Low-noise small-size microring ultrasonic detectors for high-resolution photoacoustic imaging. J Biomed Opt. 2011;16:56001.

    Article  Google Scholar 

  36. Hu S, Wang LV. Neurovascular photoacoustic tomography. Front Neuroenerg. 2010;2:10.

    Google Scholar 

  37. Li G, Li L, Zhu L, Xia J, Wang LV. Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array. J Biomed Opt. 2015;20:66010.

    Article  Google Scholar 

  38. Pramanik M. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography. J Opt Soc Am A. 2014;31:621.

    Article  Google Scholar 

  39. Köstli KP, Beard PC. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response. Appl Opt. 2003;42:1899–908.

    Article  PubMed  Google Scholar 

  40. Treeby BE, Zhang EZ, Cox BT. Photoacoustic tomography in absorbing acoustic media using time reversal. Inverse Prob. 2010;26:115003.

    Article  Google Scholar 

  41. Cox BT, Treeby BE. Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media. IEEE Trans Med Imaging. 2010;29:387–96.

    Article  PubMed  Google Scholar 

  42. Zhang EZ, Laufer JG, Pedley RB, Beard PC. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol. 2009;54:1035–46.

    Article  CAS  PubMed  Google Scholar 

  43. Laufer J, Zhang E, Raivich G, Beard P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl Opt. 2009;48:D299–306.

    Article  PubMed  Google Scholar 

  44. Wang LH. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics. 2009;3:503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kitai T, et al. Photoacoustic mammography: initial clinical results. Breast Cancer. 2014;21:146–53.

    Article  PubMed  Google Scholar 

  46. Xia W, Steenbergen W, Manohar S. Photoacoustic mammography: prospects and promises. Breast Cancer Manag. 2014;3:387–90.

    Article  CAS  Google Scholar 

  47. Heijblom M, et al. Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation. J Biomed Opt. 2013;18:126009.

    Article  PubMed  Google Scholar 

  48. Kruger RA, et al. Dedicated 3D photoacoustic breast imaging. Med Phys. 2013;40:113301.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hu S, Maslov K, Tsytsarev V, Wang LV. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt. 2009;14:40503.

    Article  Google Scholar 

  50. Stein EW, Maslov K, Wang LV. Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. J Biomed Opt. 2010;14:20502.

    Article  Google Scholar 

  51. Xia J, Danielli A, Liu Y, Wang LLV, Maslov K. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals. Opt Lett. 2013;38:2800–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yao J, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015;12:407–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging. Nat Methods. 2016;13:639–50.

    Article  CAS  PubMed  Google Scholar 

  54. De la Zerda A, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol. 2008;3:557–62.

    Article  PubMed  Google Scholar 

  55. de la Zerda A, et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano. 2012;6:4694–701.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li M-L, et al. In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt. 2009;14:10507.

    Article  Google Scholar 

  57. Burton NC, et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. NeuroImage. 2013;65:522–8.

    Article  PubMed  Google Scholar 

  58. Märk J, et al. Photoacoustic imaging of fluorophores using pump-probe excitation. Biomed Opt Express. 2015;6:2522–35.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Märk J, Schmitt F, Laufer J. Photoacoustic imaging of the excited state lifetime of fluorophores. J Opt. 2016;18:54009.

    Article  Google Scholar 

  60. Märk J, Wagener A, Zhang E, Laufer J. Photoacoustic pump-probe tomography of fluorophores in vivo using interleaved image acquisition for motion suppression. Sci Rep. 2017;7:1–9.

    Article  Google Scholar 

  61. Razansky D, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photonics. 2009;3:412–7.

    Article  CAS  Google Scholar 

  62. Krumholz A, Shcherbakova DM, Xia J, Wang LV, Verkhusha VV. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci Rep. 2014;4:3939.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jathoul AP, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat Photonics. 2015;9:239–46.

    Article  CAS  Google Scholar 

  64. Cox BT, Laufer JG, Beard PC. The challenges for quantitative photoacoustic imaging. Proc SPIE. 2009;7177:717713.

    Article  Google Scholar 

  65. Cox B, Tarvainen T, Arridge S. Multiple illumination quantitative photoacoustic tomography using transport and diffusion models. Contemp Math. 2011;559:1–12.

    Article  Google Scholar 

  66. Lutzweiler C, Razansky D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification. Sensors. 2013;13:7345–84.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Laufer J, Delpy D, Elwell C, Beard P. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Phys Med Biol. 2007;52:141–68.

    Article  CAS  PubMed  Google Scholar 

  68. Danielli A, Favazza CP, Maslov K, Wang LV. Picosecond absorption relaxation measured with nanosecond laser photoacoustics. Appl Phys Lett. 2010;97:163701.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang L, Maslov K, Wang LV. Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci U S A. 2013;110:5759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Laufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laufer, J. (2018). Photoacoustic Imaging: Principles and Applications. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics