Biomarkers of Disease Progression

  • Axel Petzold


Diagnostic criteria in multiple sclerosis (MS) continue to evolve [1]. Once a diagnosis is made a majority of patients will want to know about their long term prognosis [2]. The difficulty in providing an accurate long term prognosis relates to the unpredictability of the disease course [3]. Biomarkers for disease progression add valuable information in this context [4, 5].



The author’s work described in this chapter is supported by the Dutch MS Research Foundation, the University College London Comprehensive Bio-medical Research Centre and the Moorfields Biomedical Research Centre.


  1. 1.
    Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, Rovira A, Sastre-Garriga J, Tintorè M, Frederiksen JL, Gasperini C, Palace J, Reich DS, Banwell B, Montalban X, Barkhof F, MAGNIMS Study Group. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303.Google Scholar
  2. 2.
    Dennison L, McCloy Smith E, Bradbury K, Galea I. How do people with multiple sclerosis experience prognostic uncertainty and prognosis communication? A qualitative study. PLoS One. 2016;11:e0158982.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Larochelle C, Uphaus T, Prat A, Zipp F. Secondary progression in multiple sclerosis: neuronal exhaustion or distinct pathology? Trends Neurosci. 2016;39:325–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Stangel M, Fredrikson S, Meinl E, Petzold A, Stüve O, and Tumani H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol. 2013;9:267–76.Google Scholar
  5. 5.
    Kuhle J. Comment: “if you can’t measure it, you can’t improve it” (lord kelvin). Neurology. 2016;87:1335.Google Scholar
  6. 6.
    Petzold A. Isolated, relapsing and progressive demyelinating diseases of the central nervous system. J Neurol. 2008;255(Suppl 6):69–76.Google Scholar
  7. 7.
    Mandel M, Mercier F, Eckert B, Chin P, Betensky RA. Estimating time to disease progression comparing transition models and survival methods—an analysis of multiple sclerosis data. Biometrics. 2013;69:225–34.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petzold A, Bowser R, Calabresi P, Zetterberg H, Uitdehaag BM. Biomarker time out. Mult Scler. 2014;20(12):1560–3.Google Scholar
  9. 9.
    Petzold A. Neurodegeneration and multiple sclerosis. In: Neurodegenerative diseases. London: Springer; 2014. p. 227–45.CrossRefGoogle Scholar
  10. 10.
    Friese MA, Schattling B, and Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. 2014;10(4):225–38.Google Scholar
  11. 11.
    Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.CrossRefPubMedGoogle Scholar
  12. 12.
    Fitzner B, Hecker M, and Zettl UK. Molecular biomarkers in cerebrospinal fluid of multiple sclerosis patients. Autoimmun Rev. 2015;14(10):903–13.Google Scholar
  13. 13.
    Martin R, Bielekova B, Hohlfeld R, Utz U. Biomarkers in multiple sclerosis. Dis Markers. 2006;22:183–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat. 2006;100:229–235.Google Scholar
  15. 15.
    Kurtzke JF. Rating neurological impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Uitdehaag BM, Ader HJ, Roosma TJ, de Groot V, Kalkers NF, Polman CH. Multiple sclerosis functional composite: impact of reference population and interpretation of changes. Mult Scler. 2002;8(5):366–71.Google Scholar
  17. 17.
    Kuhle J, Petzold A. What makes a prognostic biomarker in cns diseases: strategies for targeted biomarker discovery? Part 1: Acute and monophasic diseases. Expert Opin Med Diagn. 2011;5:333–46.Google Scholar
  18. 18.
    Kuhle J, Petzold A. What makes a prognostic biomarker in cns diseases: strategies for targeted biomarker discovery? Part 2: Chronic progressive and relapsing diseases. Expert Opin Med Diagn. 2011;5:393–410.Google Scholar
  19. 19.
    Bacioglu M, Maia LF, Preische O, Schelle J, Apel A, Kaeser SA, Schweighauser M, Eninger T, Lambert M, Pilotto A, Shimshek DR, Neumann U, Kahle PJ, Staufenbiel M, Neumann M, Maetzler W, Kuhle J, Jucker M. Neurofilament light chain in blood and csf as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron. 2016;91:494–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Macrez R, Stys PK, Vivien D, Lipton SA, Docagne F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol. 2016;15(10):1089–102.CrossRefPubMedGoogle Scholar
  21. 21.
    Hagens M, van Berckel B, Barkhof F. Novel mri and pet markers of neuroinflammation in multiple sclerosis. Curr Opin Neurol. 2016;29(3):229–36.CrossRefPubMedGoogle Scholar
  22. 22.
    Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, Calabresi PA, and Polman C. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010; Expert Opin Med Diagn. 2011;9(9):921–32.Google Scholar
  23. 23.
    Martinez-Lapiscina EH, Arnow S, Wilson JA, Saidha S, Preiningerova JL, Oberwahrenbrock T, Brandt AU, Pablo LE, Guerrieri S, Gonzalez I, Outteryck O, Mueller AK, Albrecht P, Chan W, Lukas S, Balk LJ, Fraser C, Frederiksen JL, Resto J, Frohman T, Cordano C, Zubizarreta I, Andorra M, Sanchez-Dalmau B, Saiz A, Bermel R, Klistorner A, Petzold A, Schippling S, Costello F, Aktas O, Vermersch P, Oreja-Guevara C, Comi G, Leocani L, Garcia-Martin E, Paul F, Havrdova E, Frohman E, Balcer LJ, Green AJ, Calabresi PA, Villoslada P; IMSVISUAL consortium. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Send toLancet Neurol. 2016:15(6):574–84.Google Scholar
  24. 24.
    Giffroy X, Maes N, Albert A, Maquet P, Crielaard J-M, Dive D. Do evoked potentials contribute to the functional follow-up and clinical prognosis of multiple sclerosis? Acta Neurol Belg. 2017;117(1):53–59.Google Scholar
  25. 25.
    Petzold A and Plant GT. Diagnosis and classification of autoimmune optic neuropathy. Autoimmun Rev. 2014;13:539–45.Google Scholar
  26. 26.
    Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginnerâs guide. Neurochem Res. 2015;40(12):2583–99.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol. 1992;262:R20–4.PubMedGoogle Scholar
  28. 28.
    Ratner V, Gao Y, Lee H, Nedergaard M, Benveniste H, Tannenbaum AR. Cerebrospinal fluid and interstitial fluid motion via the glymphatic pathway modelled by optimal mass transport. bioRxiv. 2016:043281.Google Scholar
  29. 29.
    Petzold A, Tisdall MM, Girbes AR, Martinian L, Thom M, Kitchen N, and Smith M. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain. 2011;134(Pt 2):464–83.Google Scholar
  30. 30.
    Saunders NR, Habgood MD, Møllgård K, Dziegielewska KM. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000 Res. 2016;5Google Scholar
  31. 31.
    LeVine SM. Albumin and multiple sclerosis. BMC Neurol. 2016;16(1):1.CrossRefGoogle Scholar
  32. 32.
    Young B, Kalanuria A, Kumar M, Burke K, Balu R, Amendolia O, McNulty K, Marion BA, Beckmann B, Ciocco L, et al. Cerebral microdialysis. Crit Care Nurs Clin N Am. 2016;28(1):109–24.CrossRefGoogle Scholar
  33. 33.
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Edward Vates G, Deane R, Goldman SA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid. Sci Transl Med. 2012;4(147):147ra111.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hinson SR, Lennon VA, and Pittock SJ. Autoimmune aqp4 channelopathies and neuromyelitis optica spectrum disorders. Handb Clin Neurol. 2016;133:377–403.Google Scholar
  35. 35.
    Hemmer B, Kerschensteiner M, and Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14(4):406–19.Google Scholar
  36. 36.
    Petzold A. Retinal glymphatic system: an explanation for transient retinal layer volume changes? Brain. 2016;139:2816–26.Google Scholar
  37. 37.
    Wostyn P, De Groot V, Van Dam D, Audenaert K, Killer HE, De Deyn PP. Age-related macular degeneration, glaucoma and alzheimerâs disease: amyloidogenic diseases with the same glymphatic background? Cell Mol Life Sci. 2016;73(22):4299–301.CrossRefPubMedGoogle Scholar
  38. 38.
    Spaide RF. Retinal vascular cystoid macular edema: review and new theory. Retina. 2016;36(10):1823–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, Kappos L, Leppert D, Petzold A, Giovannoni G, and Kuhle J. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One. 2013;8(9):e75091.Google Scholar
  40. 40.
    Petzold A. Biomarker for early diagnosis of Alzheimer’s disease (chapter). The CSF analysis in dementia, 1st ed. New York: NOVA Science Publishers, Inc. pp 123–156.Google Scholar
  41. 41.
    Petzold A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2015;1600:17–31.Google Scholar
  42. 42.
    Ibitoye R, Kemp K, Rice C, Hares K, Scolding N, Wilkins A. Oxidative stress-related biomarkers in multiple sclerosis: a review. Biomark Med. 2016;10(8):889–902.CrossRefPubMedGoogle Scholar
  43. 43.
    Wilkins A, Scolding N. Protecting axons in multiple sclerosis. Mult Scler. 2008;14(8):1013–25.Google Scholar
  44. 44.
    Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol. 2005;4(5):281–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46:907–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Confavreux C, Vukusic S, and Adeleine P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain. 2003;126:770–82.Google Scholar
  47. 47.
    Petzold A, Wong S, Plant GT. Autoimmunity in visual loss. Handb Clin Neurol. 2016;133:353–76.CrossRefPubMedGoogle Scholar
  48. 48.
    Galea I, Freedman MS, and Thompson EJ. Cerebrospinal fluid analysis in the 2010 revised mcdonald’s multiple sclerosis diagnostic criteria. Ann Neurol. 2011;70(1):183; author reply 183–183; author reply 184.Google Scholar
  49. 49.
    Tumani H, Deisenhammer F, Giovannoni G, Gold R, Hartung H-P, Hemmer B, Hohlfeld R, Otto M, Stangel M, Wildemann B, Zettl UK. Revised mcdonald criteria: the persisting importance of cerebrospinal fluid analysis. Ann Neurol. 2011;70(3):520; author reply 521.Google Scholar
  50. 50.
    Chris H Polman and for the international panel on diagnosis of multiple sclerosis. Ann Neurol. 2011.Google Scholar
  51. 51.
    Schwenkenbecher P, Sarikidi A, Wurster U, Bronzlik P, Süns K-W, Raab P, Stangel M, Pul R, Skripuletz T. Mcdonald criteria 2010 and 2005 compared: persistence of high oligoclonal band prevalence despite almost doubled diagnostic sensitivity. Int J Mol Sci. 2016;17(9):1592.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Huss AM, Halbgebauer S, Öckl P, Trebst C, Spreer A, Borisow N, Harrer A, Brecht I, Balint B, Stich O, et al. Importance of cerebrospinal fluid analysis in the era of McDonald 2010 criteria: a German–Austrian retrospective multicenter study in patients with a clinically isolated syndrome. J Neurol. 2016;263(12):2499–504.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, and Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria. Ann Neurol. 2011;69(2):292–302.Google Scholar
  54. 54.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58:840–6.CrossRefPubMedGoogle Scholar
  55. 55.
    McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50:121–7.Google Scholar
  56. 56.
    Keren DF. Optimizing detection of oligoclonal bands in cerebrospinal fluid by use of isoelectric focusing with IgG immunoblotting. Am J Clin Pathol. 2003;120:649–51.CrossRefPubMedGoogle Scholar
  57. 57.
    Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, Franciotta D, Frederiksen JL, Fleming JO, Furlan R, Hintzen RQ, Hughes SG, Johnson MH, Krasulova E, Kuhle J, Magnone MC, Rajda C, Rejdak K, Schmidt HK, van Pesch V, Waubant E, Wolf C, Giovannoni G, Hemmer B, Tumani H, and Deisenhammer F. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 2009;73(22):1914–22.Google Scholar
  58. 58.
    Freedman MS, Thompson EJ, Deisenhammer F, Giovannoni G, Grimsley G, Keir G, Ohman S, Racke MK, Sharief M, Sindic CJ, Sellebjerg F, and Tourtellotte WW. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol. 2005;62:865–870.Google Scholar
  59. 59.
    Abraira V, Alvarez-Cermeño JC, Arroyo R, Cámara C, Casanova B, Cubillo S, de Andrés C, Espejo C, Fernández O, et al. Utility of oligoclonal IgG band detection for ms diagnosis in daily clinical practice. J Immunol Methods. 2011;371(1–2):170–73.Google Scholar
  60. 60.
    Petzold A. Intrathecal oligoclonal igg synthesis in multiple sclerosis. J Neuroimmunol. 2013;262(1–2):1–10.Google Scholar
  61. 61.
    Lovato L, Willis SN, Rodig SJ, Caron T, Almendinger SE, Howell OW, Reynolds R, O’Connor KC, and Hafler DA. Related b cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain. 2011;134(Pt 2):534–541.Google Scholar
  62. 62.
    Harp C, Lee J, Lambracht-Washington D, Cameron E, Olsen G, Frohman E, Racke M, and Monson N. Cerebrospinal fluid b cells from multiple sclerosis patients are subject to normal germinal center selection. J Neuroimmunol. 2007;183(1–2):189–99.Google Scholar
  63. 63.
    Racke MK. The role of b cells in multiple sclerosis: rationale for b-cell-targeted therapies. Drugs. 2010;21(Suppl 1):S9–18.Google Scholar
  64. 64.
    Obermeier B, Mentele R, Malotka J, Kellermann J, Kümpfel T, Wekerle H, Lottspeich F, Hohlfeld R, Dornmair K. Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nat Med. 2008;14(6):688–93.Google Scholar
  65. 65.
    Monson NL, Brezinschek H-P, Brezinschek RI, Mobley A, Vaughan GK, Frohman EM, Racke MK, and Lipsky PE. Receptor revision and atypical mutational characteristics in clonally expanded b cells from the cerebrospinal fluid of recently diagnosed multiple sclerosis patients. J Neuroimmunol. 2005;158(1–2):170–181.Google Scholar
  66. 66.
    Qin Y, Duquette P, Zhang Y, Talbot P, Poole R, Antel J. Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest. 1998;102:1045–50.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Arneth B and Birklein F. High sensitivity of free lambda and free kappa light chains for detection of intrathecal immunoglobulin synthesis in cerebrospinal fluid. Acta Neurol Scand. 2009;119(1):39–44.Google Scholar
  68. 68.
    Bednárová J, Stourac P, and Adam P. Relevance of immunological variables in neuroborreliosis and multiple sclerosis. Acta Neurol Scand. 2005;112(2):97–102.Google Scholar
  69. 69.
    Bourahoui A, De Seze J, Guttierez R, Onraed B, Hennache B, Ferriby D, Stojkovic T, and Vermersch P. CSF isoelectrofocusing in a large cohort of ms and other neurological diseases. Eur J Neurol. 2004;11(8):525–529.Google Scholar
  70. 70.
    Caudie C, Birouk AM, Bancel J, Claudy D, Gignoux L, Vukusic S, Confavreux C. Cytoimmunological profile of cerebrospinal fluid in diagnosis of multiple sclerosis. Pathol Biol (Paris). 2005;53(2):68–74.Google Scholar
  71. 71.
    Falip M, Tintoré M, Jardí R, Duran I, Link H, and Montalbán X. [Clinical usefulness of oligoclonal bands]. Rev Neurol. 2001;32(12):1120–4.Google Scholar
  72. 72.
    Fortini AS, Sanders EL, Weinshenker BG, Katzmann JA. Cerebrospinal fluid oligoclonal bands in the diagnosis of multiple sclerosis. Isoelectric focusing with IgG immunoblotting compared with high-resolution agarose gel electrophoresis and cerebrospinal fluid IgG index. Am J Clin Pathol. 2003;120(5):672–5.Google Scholar
  73. 73.
    Franciotta D, Zardini E, Bergamaschi R, Grimaldi LM, Andreoni L, and Cosi V. Analysis of chlamydia pneumoniae-specific oligoclonal bands in multiple sclerosis and other neurologic diseases. Acta Neurol Scand. 2005;112(4):238–41.Google Scholar
  74. 74.
    Franciotta D, Di Stefano AL, Jarius S, Zardini E, Tavazzi E, Ballerini C, Marchioni E, Bergamaschi R, Ceroni M. Cerebrospinal baff and epsteinbarr virus-specific oligoclonal bands in multiple sclerosis and other inflammatory demyelinating neurological diseases. J Neuroimmunol. 2011;230(1–2):160–3.Google Scholar
  75. 75.
    Gama PD, Machado Ldos R, Livramento JA, Gomes HR, Adoni T, Lino AM, Marchiori PE, Morales Rde R, Lana-Peixoto MA, Callegaro D. Study of oligoclonal bands restricted to the cerebrospinal fluid in multiple sclerosis patients in the city of São Paulo. Arq Neuropsiquiatr. 2009;67(4):1017–22.Google Scholar
  76. 76.
    Heard RN, Teutsch SM, Bennetts BH, Lee SD, Deane EM, and Stewart GJ. Lack of restriction of t cell receptor beta variable gene usage in cerebrospinal fluid lymphocytes in acute optic neuritis. J Neurol Neurosurg Psychiatry. 1999;67(5):585–90.Google Scholar
  77. 77.
    Li B, Dong H, Zhang J, Song X, and Guo L. Cerebrospinal fluid IgG profiles and oligoclonal bands in Chinese patients with multiple sclerosis. Acta Neurol Scand. 2007;115(5):319–24.Google Scholar
  78. 78.
    Mygland A, Trydal T, Vinje BU, and Vedeler C. Isoelectric focusing is superior to immunofixation electrophoresis in diagnosing CNS inflammation. Acta Neurol Scand. 2007;115(2):122–25.Google Scholar
  79. 79.
    Piazza F, DiFrancesco JC, Fusco ML, Corti D, Pirovano L, Frigeni B, Mattavelli L, Andreoni S, Frigo M, Ferrarese C, Tredici G, and Cavaletti G. Cerebrospinal fluid levels of BAFF and APRIL in untreated multiple sclerosis. J Neuroimmunol. 2010;220(1–2):104–7.Google Scholar
  80. 80.
    Presslauer Stefan, Milosavljevic Dejan, Brücke T, Bayer P, Hübl W. Elevated levels of kappa free light chains in CSF support the diagnosis of multiple sclerosis. J Neurol. 2008;255(10):1508–14.Google Scholar
  81. 81.
    Sá MJ, Sequeira L, Rio ME, and Thompson EJ. [Oligoclonal IgG bands in the cerebrospinal fluid of portuguese patients with multiple sclerosis: negative results indicate benign disease]. Arq Neuropsiquiatr. 2005;63(2B):375–9.Google Scholar
  82. 82.
    Sellebjerg F and Christiansen M. Qualitative assessment of intrathecal IgG synthesis by isoelectric focusing and immunodetection: interlaboratory reproducibility and interobserver agreement. Scand J Clin Lab Invest. 1996;56(2):135–43.Google Scholar
  83. 83.
    Villar LM, Masjuan J, Sádaba MC, González-Porqué P, Plaza J, Bootello A, and Alvarez-Cermeño JC. Early differential diagnosis of multiple sclerosis using a new oligoclonal band test. Arch Neurol. 2005;62(4):574–7.Google Scholar
  84. 84.
    Vogt MH, Teunissen CE, Iacobaeus E, Heijnen DA, Breij EC, Olsson T, Brundin L, Killestein J, Dijkstra CD. Cerebrospinal fluid anti-myelin antibodies are related to magnetic resonance measures of disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80(10):1110–5.Google Scholar
  85. 85.
    Xiao BG, Zhang GX, Ma CG, and Link H. The cerebrospinal fluid from patients with multiple sclerosis promotes neuronal and oligodendrocyte damage by delayed production of nitric oxide in vitro. J Neurol Sci. 1996;142(1–2):114–20.Google Scholar
  86. 86.
    Yao SY, Stratton CW, Mitchell WM, and Sriram S. CSF oligoclonal bands in MS include antibodies against chlamydophila antigens. Neurology. 2001;56(9):1168–76.Google Scholar
  87. 87.
    Link H and Huang YM. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology and clinical usefulness. J Neuroimmunol. 2006;180:17–28.Google Scholar
  88. 88.
    McCombe PA, Brown NN, Barr AE, Parkin L. Monoclonal immunoglobulin bands in the cerebrospinal fluid. Aust N Z J Med. 1991;21:227–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Ben-Hur T, Abramsky O, River Y. The clinical significance of a single abnormal immunoglobulin band in cerebrospinal fluid electrophoresis. J Neurol Sci. 1996;136:159–61.CrossRefPubMedGoogle Scholar
  90. 90.
    Davies G, Keir G, Thompson EJ, Giovannoni G. The clinical significance of an intrathecal monoclonal immunoglobulin band: a follow-up study. Neurology. 2003;60:1163–6.CrossRefPubMedGoogle Scholar
  91. 91.
    Koch M, Heersema D, Mostert J, Teelken A, and J. De Keyser. Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis. Eur J Neurol. 2007;14:797–800.Google Scholar
  92. 92.
    Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006;24:1241–52.CrossRefPubMedGoogle Scholar
  93. 93.
    Petzold A, Eikelenboom MJ, Gveric D, Keir G, Chapman M, Lazeron RH, et al. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain. 2002;125:1462–73.CrossRefPubMedGoogle Scholar
  94. 94.
    Zeman AZ, Kidd D, McLean BN, Kelly MA, Francis DA, Miller DH, Kendall BE, Rudge P, Thompson EJ, and McDonald WI. A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996;60:27–30.Google Scholar
  95. 95.
    Amato MP, Ponziani G. A prospective study on the prognosis of multiple sclerosis. Neurol Sci. 2000;21(4 Suppl 2):S831–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Villar LM, Gonzalez-Porque P, Masjuan J, Alvarez-Cermeno JC, Bootello A, Keir G. A sensitive and reproducible method for the detection of oligoclonal IgM bands. J Immunol Methods. 2001;258:151–5.CrossRefPubMedGoogle Scholar
  97. 97.
    Espiño M, Abraira V, Arroyo R, Bau L, Cámara C, Campos-Ruiz L, Casanova B, Espejo C, Fernández O, García-Merino A, García-Sánchez MI, Gómez M, Gosis A, Izquierdo G, Meca J, Montalban X, Morandeira F, Olascoaga J, Prada A, Quintana E, Ramió-Torrentà L, Rodríguez-Antigüedad A, Salgado G, Santiago JL, Sarasola E, Simó-Castelló M, Alvarez-Cermeño JC, Villar LM. Assessment of the reproducibility of oligoclonal IgM band detection for its application in daily clinical practice. Clin Chim Acta. 2015;438:67–9. doi: 10.1016/j.cca.2014.08.004.CrossRefPubMedGoogle Scholar
  98. 98.
    Villar LM, Masjuan J, P González-Porqué, Plaza J, Sádaba MC, Roldán E, Bootello A, and Alvarez-Cermeño JC. Intrathecal IgM synthesis in neurologic diseases: relationship with disability in MS. Neurology. 2002;58(5):824–6.Google Scholar
  99. 99.
    Villar LM, Masjuan J, Gonzalez-Porque P, Plaza J, Sadaba MC, Roldan E, Bootello A, Alvarez-Cermeno JC. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol. 2003;53:222–6.CrossRefPubMedGoogle Scholar
  100. 100.
    Villar LM, Costa-Frossard L, Alenda R, García-Caldentey J, Espiño M, Muriel A, Álvarez-Cermeño JC. Cerebrospinal fluid immunological biomarkers associated with axonal damage in multiple sclerosis. Eur J Neurol. 2015;22(8):1169–75. doi: 10.1111/ene.12579.CrossRefPubMedGoogle Scholar
  101. 101.
    Villar LM, Casanova B, Ouamara N, Comabella M, Jalili F, Leppert D, de Andrés C, Izquierdo G, Arroyo R, Avşar T, Lapin SV, Johnson T, Montalbán X, Fernández O, Álvarez-Lafuente R, Masterman D, García-Sánchez MI, Coret F, Siva A, Evdoshenko E, Álvarez-Cermeño JC, Bar-Or A. Immunoglobulin M oligoclonal bands: biomarker of targetable inflammation in primary progressive multiple sclerosis. Ann Neurol. 2014;76(2):231–40. doi: 10.1002/ana.24190.CrossRefPubMedGoogle Scholar
  102. 102.
    Álvarez-Cermeño JC, Muñoz-Negrete FJ, Costa-Frossard L, Sainz de la Maza S, Villar LM, Rebolleda G. Intrathecal lipid-specific oligoclonal IgM synthesis associates with retinal axonal loss in multiple sclerosis. J Neurol Sci. 2016;360:41–4. doi: 10.1016/j.jns.2015.11.030.CrossRefPubMedGoogle Scholar
  103. 103.
    Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F. B cells and multiple sclerosis. Lancet Neurol. 2008;7:852–8.CrossRefPubMedGoogle Scholar
  104. 104.
    Morris P, Davies NW, and Keir G. A screening assay to detect antigenspecific antibodies within cerebrospinal fluid. J Immunol Methods. 2006;311:81–86.Google Scholar
  105. 105.
    Luxton RW, Thompson EJ. Affinity distributions of antigen-specific IgG in patients with multiple sclerosis and in patients with viral encephalitis. J Immunol Methods. 1990;131:277–82.CrossRefPubMedGoogle Scholar
  106. 106.
    Sindic CJ, Van Antwerpen MP, Goffette S. The intrathecal humoral immune response: laboratory analysis and clinical relevance. Clin Chem Lab Med. 2001;39:333–40.CrossRefPubMedGoogle Scholar
  107. 107.
    O’Connor KC, Chitnis T, Griffin DE, Piyasirisilp S, Bar-Or A, Khoury S, Wucherpfennig KW, Hafler DA. Myelin basic proteinreactive autoantibodies in the serum and cerebrospinal fluid of multiple sclerosis patients are characterized by low-affinity interactions. J Neuroimmunol. 2003;136:140–8.CrossRefPubMedGoogle Scholar
  108. 108.
    SM Brändle, Obermeier B, Senel M, Bruder J, Mentele R, Khademi M, Olsson T, Tumani H, Kristoferitsch W, Lottspeich F, Wekerle H, Hohlfeld R, and Dornmair K. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc Natl Acad Sci U S A. 2016;113(28):7864–9.Google Scholar
  109. 109.
    Winger RC, Zamvil SS. Antibodies in multiple sclerosis oligoclonal bands target debris. Proc Natl Acad Sci U S A. 2016;113(28):7696–8.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Trapp BD, Peterson JP, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.CrossRefPubMedGoogle Scholar
  111. 111.
    Stubbs EB Jr, Lawlor MW, et al. Anti-neurofilament antibodies in neuropathy with monoclonal gammopathy of undetermined significance produce experimental motor nerve conduction block. Acta Neuropathol. 2003;105:109–16.PubMedGoogle Scholar
  112. 112.
    Gastaldi M, Zardini E, Franciotta D. An update on the use of cerebrospinal fluid analysis as a diagnostic tool in multiple sclerosis. Expert Rev Mol Diagn. 2017;17:31–46.CrossRefPubMedGoogle Scholar
  113. 113.
    Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140(3):537–46.Google Scholar
  114. 114.
    Comabella M, Sastre-Garriga J, Montalban X. Precision medicine in multiple sclerosis: biomarkers for diagnosis, prognosis, and treatment response. Curr Opin Neurol. 2016;29:254–62.Google Scholar
  115. 115.
    Malmeström C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003;61(12):1720–5.Google Scholar
  116. 116.
    Semra YK, Seidi OA, Sharief MK. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol. 2002;122:132–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Petzold A, Eikelenboom MJ, Keir G, et al. Axonal damage accumulates in the progressive phase of multiple sclerosis: a 3–year follow–up study. J Neurol Neurosurg Psychiatry. 2005;76:206–11.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Brettschneider J, Petzold A, Junker A, Tumani H. Axonal damage markers in cerebrospinal fluid of patients with clinically isolated syndrome improve predicting conversion to definite MS. Mult Scler. 2006;12:143–8.CrossRefPubMedGoogle Scholar
  119. 119.
    Petzold A, Rejdak K, Plant GT. Axonal degeneration and inflammation in acute optic neuritis. J Neurol Neurosurg Psychiatry. 2004;75:1178–80.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJ, Schepens M, Bouwman F, Twaalfhoven HA, Blom HJ, Jakobs C, Dijkstra CD. Combination of CSF n-acetylaspartate and neurofilaments in multiple sclerosis. Neurology. 2009;72(15):1322–9.Google Scholar
  121. 121.
    Kuhle J, Leppert D, Petzold A, Regeniter A, Schindler C, Mehling M, Anthony DC, Kappos L, and Lindberg RL. Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology. 2011;76(14):1206–13.Google Scholar
  122. 122.
    Lycke J, Andersen O, Rosengren L. Neurofilament in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. Eur J Neurol. 1996;3:100.Google Scholar
  123. 123.
    Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998;64:402–4.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Gunnarsson M, Malmeström C, Axelsson M, Sundström P, Dahle C, Vrethem M, Olsson T, Piehl F, Norgren N, Rosengren L, Svenningsson A, Lycke J. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011;69(1):83–89.Google Scholar
  125. 125.
    Petzold A, Mondria T, Kuhle J, Rocca MA, Cornelissen J, Te Boekhorst P, Lowenberg B, Giovannoni G, Filippi M, Kappos L, and Hintzen R. Evidence for acute neurotoxicity after chemotherapy. Ann Neurol. 2010;68(6):806–15.Google Scholar
  126. 126.
    Petzold A. The prognostic value of csf neurofilaments in multiple sclerosis at 15-year follow-up. J Neurol Neurosurg Psychiatry. 2015;88:1388–90.Google Scholar
  127. 127.
    Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeño JC, Picón C, Kuhle J, Disanto G, Kappos L, Sastre-Garriga J, Pareto D, Simon E, Comabella M, Río J, Nos C, Tur C, Castilló J, Vidal-Jordana A, Galán I, Arévalo MJ, Auger C, Rovira A, Montalban X, Tintore M. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology. 2016;87(11):1076–84. doi: 10.1212/WNL.0000000000003085.
  128. 128.
    Kuhle J, Barro C, Disanto G, Mathias A, Soneson C, Bonnier G, Yaldizli Ã, Regeniter A, Derfuss T, Canales M, Schluep M, Du Pasquier R, Krueger G, Granziera C. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult Scler. 2016;22:1550–9.CrossRefPubMedGoogle Scholar
  129. 129.
    Petzold A, Steenwijk MD, Eikelenboom JM, Wattjes MP, Uitdehaag BM. Elevated CSF neurofilament proteins predict brain atrophy: a 15-year follow-up study. Mult Scler. 2016;22:1154–62.CrossRefPubMedGoogle Scholar
  130. 130.
    Hares K, Redondo J, Kemp K, Rice C, Scolding N, Wilkins A. Axonal motor protein kif5a and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. Neuropathol Appl Neurobiol. 2017;43(3):227–41.CrossRefPubMedGoogle Scholar
  131. 131.
    Petzold A, Keir G, Green AJE, Giovannoni G, Thompson EJ. A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods. 2003;278:179–90.CrossRefPubMedGoogle Scholar
  132. 132.
    Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 1996;67:2013–8.CrossRefPubMedGoogle Scholar
  133. 133.
    N Norgren, L Rosengren, and T Stigbrand. Elevated neurofilament levels in neurological diseases. Brain Res. 2003;987(1):25–31.Google Scholar
  134. 134.
    Modvig S, Degn M, Sander B, Horwitz H, Wanscher B, Sellebjerg F, and Frederiksen JL. Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis. Mult Scler. 2016;22(5):590–8.Google Scholar
  135. 135.
    Disanto G, Adiutori R, Dobson R, Martinelli V, Costa GD, Runia T, Evdoshenko E, Thouvenot E, Trojano M, Norgren N, Teunissen C, Kappos L, Giovannoni G, Kuhle J, International Clinically Isolated Syndrome Study Group. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry. 2016;87:126–9.CrossRefPubMedGoogle Scholar
  136. 136.
    Disanto G, Adiutori R, Dobson R, Martinelli V, G. Dalla Costa, Runia T, Evdoshenko E, Thouvenot E, Trojano M, Norgren N, Teunissen C, Kappos L, Giovannoni G, and Kuhle J. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry. 2016;87(2):126–9.Google Scholar
  137. 137.
    Kuhle J, Disanto G, Lorscheider J, Stites T, Chen Y, Dahlke F, Francis G, Shrinivasan A, Radue E-W, Giovannoni G, and Kappos L. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology. 2015;84(16):1639–1643.Google Scholar
  138. 138.
    Tortorella C, Direnzo V, Taurisano P, Romano R, Ruggieri M, Zoccolella S, Mastrapasqua M, Popolizio T, Blasi G, Bertolino A, and Trojano M. Cerebrospinal fluid neurofilament tracks fmri correlates of attention at the first attack of multiple sclerosis. Mult Scler. 2015;21(4):396–401.Google Scholar
  139. 139.
    Amor S, van der Star BJ, Bosca I, Raffel J, Gnanapavan S, Watchorn J, Kuhle J, Giovannoni G, Baker D, Malaspina A, and Puentes F. Neurofilament light antibodies in serum reflect response to natalizumab treatment in multiple sclerosis. Mult Scler. 2014;20(10):1355–62.Google Scholar
  140. 140.
    Gresle MM, Liu Y, Dagley LF, Haartsen J, Pearson F, Purcell AW, Laverick L, Petzold A, Lucas RM, Van der Walt A, Prime H, Morris DR, Taylor BV, Shaw G, and Butzkueven H. Serum phosphorylated neurofilament-heavy chain levels in multiple sclerosis patients. J Neurol Neurosurg Psychiatry. 2014;85(11):1209–13.Google Scholar
  141. 141.
    Kuhle J, Malmeström C, Axelsson M, Plattner K, Yaldizli O, Derfuss T, Giovannoni G, Kappos L, Lycke J. Neurofilament light and heavy subunits compared as therapeutic biomarkers in multiple sclerosis. Acta Neurol Scand. 2013;128(6):e33–6.Google Scholar
  142. 142.
    Petzold A, Baker D, Pryce G, et al. Quantification of neurodegeneration by measurement of brain–specific proteins. J Neuroimmunol. 2003;138:45–8.CrossRefPubMedGoogle Scholar
  143. 143.
    Hares K, Kemp K, Gray E, Scolding N, and Wilkins A. Neurofilament dot blot assays: novel means of assessing axon viability in culture. J Neurosci Methods. 2011;198(2):195–203.Google Scholar
  144. 144.
    G Shaw, C Yang, R Ellis, K Anderson, et al. Hyperphosphorylated neurofilament NF-H is a serum biomarker for axonal injury. Biochem Biophys Res Commun. 2005;336:1268–77.Google Scholar
  145. 145.
    J Kuhle, A Regeniter, D Leppert, M Mehling, L Kappos, RLP Lindberg, and A Petzold. A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J Neuroimmunol. 2010;220:114–9.Google Scholar
  146. 146.
    Abdo WF, van de Warrenburg BP, Munneke M, van Geel WJ, Bloem BR Kremer HP, and Verbeek MM. CSF analysis differentiates multiple-system atrophy from idiopathic late-onset cerebellar ataxia. Neurology. 2006;67:474–9.Google Scholar
  147. 147.
    Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Ã, Liman V, Norgren N, Blennow K, Zetterberg H. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: elisa, electrochemiluminescence immunoassay and simoa. Clin Chem Lab Med. 2016;54:1655–61.CrossRefPubMedGoogle Scholar
  148. 148.
    Limberg M, Disanto G, Barro C, Kuhle J. Neurofilament light chain determination from peripheral blood samples. Methods Mol Biol. 2016;1304:93–8.CrossRefPubMedGoogle Scholar
  149. 149.
    Petzold A, Gveric D, Groves M, Schmierer K, Grant D, Chapman M, Keir G, Cuzner L, and Thompson EJ. Phosphorylation and compactness of neurofilaments in multiple sclerosis: indicators of axonal pathology. Exp Neurol. 2008;213:326–35.Google Scholar
  150. 150.
    Petzold A, Eikelenboom MJ, Keir G, et al. The new Global Multiple Sclerosis Severity Score (MSSS) correlates with axonal but not glial biomarkers. Mult Scler. 2006;12:325–8.CrossRefPubMedGoogle Scholar
  151. 151.
    Cloos PA and Christgau S. Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology. 2004;5(3):139–58.Google Scholar
  152. 152.
    Delom F and Chevet E. Phosphoprotein analysis: from proteins to proteomes. Proteome Sci. 2006;4:15.Google Scholar
  153. 153.
    Yao X, Kwan HY, and Huang Y. Regulation of TRP channels by phosphorylation. Neurosignals. 2005;14:273–80.Google Scholar
  154. 154.
    Ventura JJ, Nebreda AR. Protein kinases and phosphatases as therapeutic targets in cancer. Clin Transl Oncol. 2006;8:153–60.CrossRefPubMedGoogle Scholar
  155. 155.
    Forrest AR, Taylor DF, Fink JL, Gongora MM, Flegg C, Teasdale RD, Suzuki H, Kanamori M, Kai C, Hayashizaki Y, and Grimmond SM. PhosphoregDB: the tissue and sub-cellular distribution of mammalian protein kinases and phosphatases. BMC Bioinformatics. 2006;7:82.Google Scholar
  156. 156.
    Wang JQ, Arora A, Yang L, Parelkar NK, Zhang G, Liu X, Choe ES, and Mao L. Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity. Mol Neurobiol. 2005;32:237–49.Google Scholar
  157. 157.
    Rye CSand Baell JB. Phosphate isosteres in medicinal chemistry. Curr Med Chem. 2005;12:3127–41.Google Scholar
  158. 158.
    Lieser SA, Aubol BE, Wong L, Jennings PA, Adams JA. Coupling phosphoryl transfer and substrate interactions in protein kinases. Biochim Biophys Acta. 1754;191–109:2005.Google Scholar
  159. 159.
    Shen K, Hines AC, Schwarzer D, Pickin KA, and Cole PA. Protein kinase structure and function analysis with chemical tools. Biochim Biophys Acta. 2005;1754:65–78.Google Scholar
  160. 160.
    Roskoski R Jr. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 2005;331:1–14.CrossRefPubMedGoogle Scholar
  161. 161.
    Lua BL and Low BC. Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett. 2005;579:577–85.Google Scholar
  162. 162.
    Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med. 2005;38:2–11.CrossRefPubMedGoogle Scholar
  163. 163.
    Chen F, David D, Ferrari A, and Gotz J. Posttranslational modifications of tau–role in human tauopathies and modeling in transgenic animals. Curr Drug Targets. 2004;5:503–15.Google Scholar
  164. 164.
    Krupa A, Preethi G, and Srinivasan N. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. J Mol Biol. 2004;339:1025–39.Google Scholar
  165. 165.
    Carden MJ, Schlaepfer WW, and Lee VM. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J Biol Chem. 1985;260:9805–17.Google Scholar
  166. 166.
    Harauz G, Musse AA. A tale of two citrullines—structural and functional aspects of myelin basic protein deimination in health and disease. Neurochem Res. 2007;32(2):137–58.Google Scholar
  167. 167.
    Piacentini M, Colizzi V. Tissue transglutaminase: apoptosis versus autoimmunity. Immunol Today. 1999;20:130–4.CrossRefPubMedGoogle Scholar
  168. 168.
    Virella G, Thorpe SR, Alderson NL, Stephan EM, Atchley D, Wagner F, and MF Lopes-Virella. Autoimmune response to advanced glycosylation end-products of human LDL. J Lipid Res. 2003;44:487–93.Google Scholar
  169. 169.
    Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010;2011:164608.PubMedPubMedCentralGoogle Scholar
  170. 170.
    Schlaepfer WW, Lee C, Lee VMY, Zimmerman UJP. An immunoblot study of neurofilament degradation in situ and during calcium–activated proteolysis. J Neurochem. 1985;44:502–9.CrossRefPubMedGoogle Scholar
  171. 171.
    Wang S, Lees GJ, Rosengren LE, Karlsson JE, Hamberger A, Haglid KG. Proteolysis of filament proteins in glial and neuronal cells after in vivo stimulation of hippocampal NMDA receptors. Neurochem Res. 1992;17:1005–9.CrossRefPubMedGoogle Scholar
  172. 172.
    Van Geel WJA, Rosengren LE, and Verbeek MM. An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods. 2005;296:179–85.Google Scholar
  173. 173.
    Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis. J Neuroimmunol. 1987;14:149–60.CrossRefPubMedGoogle Scholar
  174. 174.
    Pant HC. Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain. Biochem J. 1988;256:665–8.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Irani DN, Anderson C, Gundry R, Cotter R, Moore S, Kerr DA, McArthur JC, Sacktor N, Pardo CA, Jones M, Calabresi PA, and Nath A. Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis. Ann Neurol. 2006;59:237–247.Google Scholar
  176. 176.
    Carrette O, Burkhard PR, Hughes S, Hochstrasser DF, Sanchez JC. Truncated cystatin C in cerebrospiral fluid: technical [corrected] artefact or biological process? Proteomics. 2005;5:3060–5.CrossRefPubMedGoogle Scholar
  177. 177.
    Steinman L. Multiple approaches to multiple sclerosis. Nat Med. 2000;6:15–6.CrossRefPubMedGoogle Scholar
  178. 178.
    Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell. 1996;85:299–302.Google Scholar
  179. 179.
    Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, and Rothbard JB. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature. 1986;324:258–60.Google Scholar
  180. 180.
    Moscarello MA, Wood DD, Ackerley C, Boulias C. Myelin in multiple sclerosis is developmentally immature. J Clin Invest. 1994;94:146–54.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Pritzker LB, Joshi S, Harauz G, Moscarello MA. Deimination of myelin basic protein. 2. Effect of methylation of MBP on its deimination by peptidylarginine deiminase. Biochemistry. 2000;39:5382–8.CrossRefPubMedGoogle Scholar
  182. 182.
    Fujii N, Ishibashi Y, Satoh K, Fujino M, Harada K. Simultaneous racemization and isomerization at specific aspartic acid residues in alpha B-crystallin from the aged human lens. Biochim Biophys Acta. 1994;1204:157–63.CrossRefPubMedGoogle Scholar
  183. 183.
    van Stipdonk MJ, Willems AA, Amor S, Persoon-Deen C, Travers PJ, Boog CJ, van Noort JM. T cells discriminate between differentially phosphorylated forms of alphaB-crystallin, a major central nervous system myelin antigen. Int Immunol. 1998;10:943–50.CrossRefPubMedGoogle Scholar
  184. 184.
    Voorter CE, de Haard-Hoekman WA, van den Oetelaar PJ, Bloemendal H, de Jong WW. Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate. J Biol Chem. 1988;263:19020–3.PubMedGoogle Scholar
  185. 185.
    Corthay A, Backlund J, Broddefalk J, Michaelsson E, Goldschmidt TJ, Kihlberg J, and Holmdahl R. Epitope glycosylation plays a critical role for T cell recognition of type II collagen in collagen-induced arthritis. Eur J Immunol. 1998;28:2580–2590.Google Scholar
  186. 186.
    Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, and Serre G. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol. 2001;166:4177–4184.Google Scholar
  187. 187.
    Girbal-Neuhauser E, Durieux JJ, Arnaud M, Dalbon P, Sebbag M, Vincent C, Simon M, Senshu T, Masson-Bessiere C, Jolivet-Reynaud C, Jolivet M, and Serre G. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol. 1999;162:585–594.Google Scholar
  188. 188.
    Asaga H, Yamada M, Senshu T. Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun. 1998;243:641–6.CrossRefPubMedGoogle Scholar
  189. 189.
    Inagaki M, Takahara H, Nishi Y, Sugawara K, and Sato C. Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. J Biol Chem. 1989;264:18119–27.Google Scholar
  190. 190.
    Newkirk MM, Goldbach-Mansky R, Lee J, Hoxworth J, McCoy A, Yarboro C, Klippel J, El-Gabalawy HS. Advanced glycation endproduct (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther. 2003;5:R82–90.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Brange J, Langkjaer L, Havelund S, and Volund A. Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res. 1992;9:715–26.Google Scholar
  192. 192.
    Trigwell SM, Radford PM, Page SR, Loweth AC, James RF, Morgan NG, Todd I. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus. Clin Exp Immunol. 2001;126:242–9.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Young AL, Carter WG, Doyle HA, Mamula MJ, Aswad DW. Structural integrity of histone H2B in vivo requires the activity of protein L-isoaspartate O-methyltransferase, a putative protein repair enzyme. J Biol Chem. 2001;276:37161–5.CrossRefPubMedGoogle Scholar
  194. 194.
    Kim JH, Nam KH, Kwon OS, Kim IG, Bustin M, Choy HE, Park SC. Histone cross-linking by transglutaminase. Biochem Biophys Res Commun. 2002;293:1453–7.CrossRefPubMedGoogle Scholar
  195. 195.
    Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S, Jones PJ, Blier PR. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J Biol Chem. 1999;274:22321–7.CrossRefPubMedGoogle Scholar
  196. 196.
    Monneaux F, Lozano JM, Patarroyo ME, Briand JP, and Muller S. T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MR/lpr mice. Eur J Immunol. 2003;33:287–96.Google Scholar
  197. 197.
    Cao L, Sun D, Whitaker JN. Citrullinated myelin basic protein induces experimental autoimmune encephalomyelitis in Lewis rats through a diverse T cell repertoire. J Neuroimmunol. 1998;88:21–9.CrossRefPubMedGoogle Scholar
  198. 198.
    Hill JA, Southwood S, Sette A, Jevnikar AM, Bell DA, and Cairns E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol. 2003;171:538–41.Google Scholar
  199. 199.
    Sollid LM. Molecular basis of celiac disease. Annu Rev Immunol. 2000;18:53–81.Google Scholar
  200. 200.
    Wuttge DM, Bruzelius M, Stemme S. T-cell recognition of lipid peroxidation products breaks tolerance to self proteins. Immunology. 1999;98:273.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Nicholas AP, Sambandam T, Echols JD, and Tourtellotte WW. Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol. 2004;473(1):128–36.Google Scholar
  202. 202.
    Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, and Fares C. Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron. 2004;35:503–42.Google Scholar
  203. 203.
    Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci. 2006;63(17):1945–61.CrossRefPubMedGoogle Scholar
  204. 204.
    Musse AA, Boggs JM, Harauz G. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope. Proc Natl Acad Sci U S A. 2006;103:4422–7.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Doyle HA and Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 2001;22(8):443–9.Google Scholar
  206. 206.
    Doyle HA, Mamula MJ. Posttranslational protein modifications: new flavors in the menu of autoantigens. Curr Opin Rheumatol. 2002;14:244–9.CrossRefPubMedGoogle Scholar
  207. 207.
    Doyle HA and Mamula MJ. Posttranslational modifications of selfantigens. Ann N Y Acad Sci. 2005;1050:1–9.Google Scholar
  208. 208.
    Husted C. Structural insight into the role of myelin basic protein in multiple sclerosis. Proc Natl Acad Sci U S A. 2006;103:4339–4340.Google Scholar
  209. 209.
    Wood DD, Bilbao JM, O’Connors P, and Moscarello MA. Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol. 1996;40:18–24.Google Scholar
  210. 210.
    Lamensa JW and Moscarello MA. Deimination of human myelin basic protein by a peptidylarginine deiminase from bovine brain. J Neurochem. 1993;61:987–96.Google Scholar
  211. 211.
    Pritzker LB, Nguyen TA, Moscarello MA. The developmental expression and activity of peptidylarginine deiminase in the mouse. Neurosci Lett. 1999;266:161–4.CrossRefPubMedGoogle Scholar
  212. 212.
    Moscarello MA, Pritzker L, Mastronardi FG, and Wood DD. Peptidylarginine deiminase: a candidate factor in demyelinating disease. J Neurochem. 2002;81:335–43.Google Scholar
  213. 213.
    Mastronardi FGand Moscarello MA. Molecules affecting myelin stability: a novel hypothesis regarding the pathogenesis of multiple sclerosis. J Neurosci Res. 2005;80:301–8.Google Scholar
  214. 214.
    De Keyser J, Schaaf M, Teelken A. Peptidylarginine deiminase activity in postmortem white matter of patients with multiple sclerosis. Neurosci Lett. 1999;260:74–6.CrossRefPubMedGoogle Scholar
  215. 215.
    de Seze J, Dubucquoi S, Lefranc D, Virecoulon F, Nuez I, Dutoit V, Vermersch P, Prin L. IgG reactivity against citrullinated myelin basic protein in multiple sclerosis. J Neuroimmunol. 2001;117:149–55.CrossRefPubMedGoogle Scholar
  216. 216.
    Raijmakers R, Vogelzangs J, Raats J, Panzenbeck M, Corby M, Jiang H, Thibodeau M, Haynes N, Van Venrooij WJ, Pruijn GJ, and Werneburg B. Experimental autoimmune encephalomyelitis induction in peptidylarginine deiminase 2 knockout mice. J Comp Neurol. 2006;498:217–26.Google Scholar
  217. 217.
    Bizzozero OA, DeJesus G, Callahan K, and Pastuszyn A. Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. J Neurosci Res. 2005;81:687–695.Google Scholar
  218. 218.
    Anderson JM, Hampton DW, Patani R, Pryce G, Crowther RA, Reynolds R, Franklin RJM, Giovannoni G, Compston DAS, Baker D, Spillantini MG, and Chandran S. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis. Brain. 2008;131(Pt 7):1736–48.Google Scholar
  219. 219.
    Schneider A, Wright Araujo G, Trajkovic K, et al. Hyperphosphorylation and aggregation of tau in experimental autoimmune encephalomyelitis. J Biol Chem. 2004;279(53):55833–9.Google Scholar
  220. 220.
    Bartosik-Psujek H and Stelmasiak Z. The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. J Neural Transm. 2006;113(3):339–345.Google Scholar
  221. 221.
    Brettschneider J, Maier M, Arda S, Claus A, Sussmuth SD, Kassubek J, and Tumani H. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult Scler. 2005;11(3):261–265.Google Scholar
  222. 222.
    Bartosik-Psujek H, Archelos JJ. Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. J Neurol. 2004;251:414–20.CrossRefPubMedGoogle Scholar
  223. 223.
    Kapaki E, Paraskevas GP, Michalopoulou M, and Kilidireas K. Increased cerebrospinal fluid tau protein in multiple sclerosis. Eur Neurol. 2000;43:228–32.Google Scholar
  224. 224.
    Guimaraes I, Cardoso MI, Sa MJ. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult Scler. 2006;12:354–6.CrossRefPubMedGoogle Scholar
  225. 225.
    Jimenez-Jimenez FJ, Zurdo JM, Hernanz A, Medina-Acebron S, de Bustos F, Barcenilla B, Sayed Y, Ayuso-Peralta L. Tau protein concentrations in cerebrospinal fluid of patients with multiple sclerosis. Acta Neurol Scand. 2002;106:351–4.CrossRefPubMedGoogle Scholar
  226. 226.
    Lim ET, Grant D, Pashenkov M, Keir G, Thompson EJ, Söderström M, Giovannoni G. Cerebrospinal fluid levels of brain specific proteins in optic neuritis. Mult Scler. 2004;10(3):261–265.Google Scholar
  227. 227.
    Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, et al. Multiple sclerosis severity score. Using disability and disease duration to rate disease severity. Neurology. 2005;64:1144–51.Google Scholar
  228. 228.
    Nilselid AM, Davidsson P, Nagga K, Andreasen N, Fredman P, and Blennow K. Clusterin in cerebrospinal fluid: analysis of carbohydrates and quantification of native and glycosylated forms. Neurochem Int. 2006;48:718–28.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Moorfields Eye HospitalLondonUK
  2. 2.Dutch Expertise Centre for Neuro–ophthalmologyVU Medical Center, Amsterdam, The Netherlands & UCL Institute of NeurologyLondonUK

Personalised recommendations