Advertisement

The Neuropathology of Progressive Multiple Sclerosis

Chapter

Abstract

Multiple sclerosis is fundamentally an inflammatory demyelinating illness affecting the brain and spinal cord. The typical clinical feature of relapsing and remitting episodes of neurological disability reflects this pathological hallmark. However, some of the earliest neuropathological descriptions of MS made reference to atrophy of the brain and spinal cord as well as microscopic axonal injury [1, 2] (see Kornek and Lassmann, 1999 for a comprehensive account on the historical reporting of axonal pathology in MS [3]). Likewise, it has long been recognised that most patients with relapsing-remitting MS will ultimately experience progressive accumulation of disability (secondary progression), while in others the accrual of disability is progressive from onset (primary progression). Advances in immunomodulatory therapy have revolutionised the care of patients with relapsing-remitting MS. Meanwhile, until recently, progressive forms of the illness remain stubbornly resistant to emerging therapies in a manner more in keeping with a neurodegenerative disease, although in the last few years a number of agents showed positive results in SPMS and PPMS trials. In recent years, a new light has been thrown on the neuropathology of MS, with focus often shifting towards neuro-axonal and grey matter pathology as possible correlates of progressive, irreversible disability. In this chapter, we hope to describe the hallmark white matter inflammatory demyelination of MS, to report on the relatively recent studies of neuro-axonal and grey matter pathology as seen in the progressive forms, and to reflect on the possible pathological correlates of progressive disability.

References

  1. 1.
    Carswell R. Pathological anatomy: illustrations of the elementary forms of disease. London: Longman; 1838.Google Scholar
  2. 2.
    Charcot JM. Histologie de la sclérose en plaques. Gaz Hôpitaux. 1868;41:554–5.Google Scholar
  3. 3.
    Kornek B, Lassmann H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999;9:651–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Cox G. Theory and practice of histological techniques. New York: Churchill-Livingstone; 1977. p. 249–73.Google Scholar
  5. 5.
    Pittock SJ, et al. Clinical course, pathological correlations, and outcome of biopsy proved inflammatory demyelinating disease. J Neurol Neurosurg Psychiatry. 2005;76:1693–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kolasinski J, et al. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain. 2012;135:2938–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kuhlmann T, et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2016;133:13–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Frischer JM, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78:710–21.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Prineas JW, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol. 2001;50:646–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Ozawa K, et al. Patterns of oligodendroglia pathology in multiple-sclerosis. Brain. 1994;117:1311–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Frischer JM, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132:1175–89.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Revesz T, Kidd D, Thompson AJ, Barnard RO, Mcdonald WI. A comparison of the pathology of primary and secondary progressive multiple-sclerosis. Brain. 1994;117:759–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Barnett MH, Parratt JDE, Cho E-S, Prineas JW. Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann Neurol. 2009;65:32–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Lucchinetti C, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–17.PubMedCrossRefGoogle Scholar
  15. 15.
    Breij ECW, et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63:16–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Prineas JW, Connell F. Remyelination in multiple-sclerosis. Ann Neurol. 1979;5:22–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Barkhof F, et al. Remyelinated lesions in multiple sclerosis—magnetic resonance image appearance. Arch Neurol. 2003;60:1073–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain. 2002;125:338–49.PubMedCrossRefGoogle Scholar
  19. 19.
    Wolswijk G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain. 2000;123:105–15.PubMedCrossRefGoogle Scholar
  20. 20.
    Kwon EE, Prineas JW. Blood-brain-barrier abnormalities in longstanding multiple-sclerosis lesions-an immunohistochemical study. J Neuropathol Exp Neurol. 1994;53:625–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Leech S, Kirk J, Plumb J, McQuaid S. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol. 2007;33:86–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12:154–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain-barrier abnormalities in chronic-progressive multiple-sclerosis. Acta Neuropathol. 1995;90:228–38.PubMedCrossRefGoogle Scholar
  24. 24.
    Adams RA, et al. The fibrin-derived gamma(377–395) peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med. 2007;204:571–82.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hochmeister S, et al. Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol. 2006;65:855–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120:393–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002;125:2202–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Kornek B, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis—a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000;157:267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Trapp BD, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.PubMedCrossRefGoogle Scholar
  30. 30.
    Tallantyre EC, et al. Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. Brain. 2009;132:1190–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000;48:893–901.PubMedCrossRefGoogle Scholar
  32. 32.
    Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S. Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain. 2000;123:308–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Kutzelnigg A, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Seewann A, et al. Diffusely abnormal white matter in chronic multiple sclerosis imaging and histopathologic analysis. Arch Neurol. 2009;66:601–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Dawson JW. The histology of disseminated sclerosis. Trans R Soc Edinburgh. 1916;50:517–740.CrossRefGoogle Scholar
  36. 36.
    Dinkler M. Zur Kasuistik der multiplen Herdsklerose des Gehirns und Ruckenmarks. Dtsch Z Nervenheilkd. 1904;26:233–47.CrossRefGoogle Scholar
  37. 37.
    Sander M. Hirnrindenbefunde bei multiper Sklerose. Monatsschr Psychiatr Neurol. 1898;IV:427–36.CrossRefGoogle Scholar
  38. 38.
    Schob F. Ein Betrag zur patologischen Anatomie der multiplen Sklerose. Monatsschr Psychiatr Neurol. 1907;22:62–87.CrossRefGoogle Scholar
  39. 39.
    Brownell B, Hughes JT. The distribution of plaques in the cerebrum in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1962;25:315–20.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lumsden CE. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. Amsterdam: North-Holland; 1970. p. 217–309.Google Scholar
  41. 41.
    Itoyama Y, et al. Immuno-cytochemical observations on the distribution of myelin-associated glycoprotein and myelin basic-protein in multiple-sclerosis lesions. Ann Neurol. 1980;7:167–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62:723–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Vercellino M, et al. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64:1101–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kutzelnigg A, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17:38–44.PubMedCrossRefGoogle Scholar
  45. 45.
    Gilmore CP, et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry. 2009;80:182–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Moll NM, et al. Cortical demyelination in PML and MS—similarities and differences. Neurology. 2008;70:336–43.PubMedCrossRefGoogle Scholar
  47. 47.
    Papadopoulos D, et al. Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol. 2009;19:238–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Haider L, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85:1386–95.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gilmore CP, et al. Spinal cord gray matter demyelination in multiple sclerosis—a novel pattern of residual plaque morphology. Brain Pathol. 2006;16:202–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler. 2003;9:323–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Bo L, Geurts JJG, van der Valk P, Polman C, Barkhof F. Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis. Arch Neurol. 2007;64:76–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50:389–400.PubMedCrossRefGoogle Scholar
  53. 53.
    Geurts JJG, et al. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. Am J Neuroradiol. 2005;26:572–7.PubMedGoogle Scholar
  54. 54.
    Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology. 2006;67:960–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Magliozzi R, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.PubMedCrossRefGoogle Scholar
  56. 56.
    Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.PubMedCrossRefGoogle Scholar
  57. 57.
    Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 2006;6:205–17.PubMedCrossRefGoogle Scholar
  58. 58.
    Magliozzi R, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68:477–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Howell OW, et al. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathol Appl Neurobiol. 2015;41:798–813.PubMedCrossRefGoogle Scholar
  60. 60.
    Kidd D, et al. Cortical lesions in multiple sclerosis. Brain. 1999;122:17–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Lucchinetti CF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–97.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Trapp BD, Nave K-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.PubMedCrossRefGoogle Scholar
  63. 63.
    Gilmore CP, et al. Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol. 2009;19:642–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Klaver R, et al. Neuronal and axonal loss in normal-appearing gray matter and subpial lesions in multiple sclerosis. J Neuropathol Exp Neurol. 2015;74:453–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Juergens T, et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain. 2016;139:39–46.CrossRefGoogle Scholar
  66. 66.
    Bruck W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol. 2005;252:V3–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Pesini P, et al. An immunohistochemical marker for Wallerian degeneration of fibers in the central and peripheral nervous system. Brain Res. 1999;828:41–59.PubMedCrossRefGoogle Scholar
  68. 68.
    Al-Abdulla NA, Portera-Cailliau C, Martin LJ. Occipital cortex ablation in adult rat causes retrograde neuronal death in the lateral geniculate nucleus that resembles apoptosis. Neuroscience. 1998;86:191–209.PubMedCrossRefGoogle Scholar
  69. 69.
    Bergers E, et al. Axonal damage in the spinal cord of MS patients occurs largely independent of T2 MRI lesions. Neurology. 2002;59:1766–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol. 2000;47:391–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Ganter P, Prince C, Esiri MM. Spinal cord axonal loss in multiple sclerosis: a post-mortem study. Neuropathol Appl Neurobiol. 1999;25:459–67.PubMedCrossRefGoogle Scholar
  72. 72.
    DeLuca GC, Ebers GC, Esiri MM. Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts. Brain. 2004;127:1009–18.PubMedCrossRefGoogle Scholar
  73. 73.
    Dutta R, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.PubMedCrossRefGoogle Scholar
  74. 74.
    Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W. Acute axonal injury in multiple sclerosis—correlation with demyelination and inflammation. Brain. 2000;123:1174–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Mews I, Bergmann M, Bunkowski S, Gullotta F, Bruck W. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult Scler. 1998;4:55–62.PubMedCrossRefGoogle Scholar
  76. 76.
    Barnes D, Munro PMG, Youl BD, Prineas JW, Mcdonald WI. The longstanding MS lesion—a quantitative MRI and electron-microscopic study. Brain. 1991;114:1271–80.PubMedCrossRefGoogle Scholar
  77. 77.
    Singh S, et al. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J Neuroinflammation. 2017;14(1):57.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Androdias G, et al. Meningeal T cells associate with diffuse axonal loss in multiple sclerosis spinal cords. Ann Neurol. 2010;68:465–76.PubMedCrossRefGoogle Scholar
  79. 79.
    Dziedzic T, et al. Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol. 2010;20:976–85.PubMedGoogle Scholar
  80. 80.
    Redford EJ, Kapoor R, Smith KJ. Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain. 1997;120:2149–57.PubMedCrossRefGoogle Scholar
  81. 81.
    Sun D, Newman TA, Perry VH, Weller RO. Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol. 2004;30:374–84.PubMedCrossRefGoogle Scholar
  82. 82.
    Werner P, Pitt D, Raine CS. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol. 2001;50:169–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Lappe-Siefke C, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet. 2003;33:366–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Chari DM, Crang AJ, Blakemore WF. Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J Neuropathol Exp Neurol. 2003;62:908–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Singh S, et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 2013;125:595–608.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    De Groot CJA, et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions—increased yield of active demyelinating and (p)reactive lesions. Brain. 2001;124:1635–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Correale J. The role of microglial activation in disease progression. Mult Scler J. 2014;20:1288–95.CrossRefGoogle Scholar
  88. 88.
    Fischer MT, et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 2012;135:886–99.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ponath G, et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain. 2017;140:399–413.PubMedCrossRefGoogle Scholar
  90. 90.
    Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013;61:453–65.PubMedCrossRefGoogle Scholar
  91. 91.
    Correale J, Farez MF. The role of astrocytes in multiple sclerosis progression. Front Neurol. 2015;6:180.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Rossi S, et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler J. 2014;20:304–12.CrossRefGoogle Scholar
  93. 93.
    Bartos A, et al. Elevated intrathecal antibodies against the medium neurofilament subunit in multiple sclerosis. J Neurol. 2007;254:20–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Rawes JA, Calabrese VP, Khan OA, DeVries GH. Antibodies to the axolemma-enriched fraction in the cerebrospinal fluid and serum of patients with multiple sclerosis and other neurological diseases. Mult Scler. 1997;3:363–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998;64:402–4.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Silber E, Semra YK, Gregson NA, Sharief MK. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology. 2002;58:1372–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Hirano A, Llena JF. Morphology of central nervous system axons. In: Waxman SG, Kocsis JD, Stys PK, editors. The axon: structure, function and pathophysiology. New York: Oxford University Press; 1995. p. 49–67.CrossRefGoogle Scholar
  98. 98.
    Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult Scler J. 2014;20:1806–13.CrossRefGoogle Scholar
  99. 99.
    Campbell GR, et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 2011;69:481–92.PubMedCrossRefGoogle Scholar
  100. 100.
    Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. 2014;10:225–38.PubMedCrossRefGoogle Scholar
  101. 101.
    Waxman SG. Acquired channelopathies in nerve injury and MS. Neurology. 2001;56:1621–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Smith KJ. Newly lesioned tissue in multiple sclerosis-a role for oxidative damage? Brain. 2011;134:1877–81.PubMedCrossRefGoogle Scholar
  103. 103.
    Mahad DJ, et al. Mitochondrial changes within axons in multiple sclerosis. Brain. 2009;132:1161–74.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Meuth SG, et al. CNS inflammation and neuronal degeneration is aggravated by impaired CD200-CD200R-mediated macrophage silencing. J Neuroimmunol. 2008;194:62–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Gnanapavan S, et al. Progression in multiple sclerosis is associated with low endogenous NCAM. J Neurochem. 2013;125:766–73.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lovato L, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain. 2011;134:534–41.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Louapre C, Lubetzki C. Neurodegeneration in multiple sclerosis is a process separate from inflammation: yes. Mult Scler J. 2015;21:1626–8.CrossRefGoogle Scholar
  108. 108.
    Kassmann CM, et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet. 2007;39:969–76.PubMedCrossRefGoogle Scholar
  109. 109.
    Kremenchutzky M, Rice GPA, Baskerville J, Wingerchuk DM, Ebers GC. The natural history of multiple sclerosis: a geographically based study—9: Observations on the progressive phase of the disease. Brain. 2006;129:584–94.PubMedCrossRefGoogle Scholar
  110. 110.
    Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Cottrell DA, et al. The natural history of multiple sclerosis: a geographically based study—5. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999;122:625–39.PubMedCrossRefGoogle Scholar
  112. 112.
    Runmarker B, Andersen O. Prognostic factors in a multiple-sclerosis incidence cohort with 25 years of follow-up. Brain. 1993;116:117–34.PubMedCrossRefGoogle Scholar
  113. 113.
    Weinshenker BGEA. The natural-history of multiple-sclerosis—a geographically based study. Brain. 1989;112:133–46.PubMedCrossRefGoogle Scholar
  114. 114.
    Bramow S, et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133:2983–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Division of Neurosciences, School of MedicineUniversity of NottinghamNottinghamUK
  2. 2.Department of PathologyNottingham University HospitalNottinghamUK
  3. 3.Department of Clinical NeurologyUniversity Hospital of WalesCardiffUK

Personalised recommendations