Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 606 Accesses

Abstract

As we have discussed in Chap. 2, the ultrashort laser pulse technique has become a very powerful tool to probe the ultrafast physical and chemical processes, such as the excitation of electron-hole pairs and carrier diffusion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. H.W. Mocker, R.J. Collins, Mode competition and self-locking effects in a q-switched ruby laser. Appl. Phys. Lett. 7, 270 (1965)

    Article  ADS  Google Scholar 

  2. A.J. DeMaria, Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 8, 174 (1966)

    Article  ADS  Google Scholar 

  3. H.A. Haus, Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049 (1975)

    Article  ADS  Google Scholar 

  4. E.P. Ippen, Principles of passive mode locking. Appl. Phys. B 58, 159–170 (1994)

    Article  ADS  Google Scholar 

  5. R. Paschotta, U. Keller, Passive mode locking with slow saturable absorbers. Appl. Phys. B: Lasers and Opt. 73, 653–662 (2001)

    Article  ADS  Google Scholar 

  6. F.X. Kurtner, J.A.der Au, U. Keller, Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. in Quantum Electron. 4, 159–168 (1998)

    Google Scholar 

  7. E.G. Arthurs, Buildup of picosecond pulse generation in passively mode-locked rhodamine dye lasers. Appl. Phys. Lett. 23, 88 (1973)

    Article  ADS  Google Scholar 

  8. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  9. J.D. Zapata et al., Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Scienctific Rep. 6, 20644 (2016)

    Article  ADS  Google Scholar 

  10. J.W. Kim et al., in Opto-Electronics and Communications Conference (OECC), 2012 17th. (2012), pp. 673–674

    Google Scholar 

  11. Z. Yu et al., High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film. Opt. Express 22, 11508–11515 (2014)

    Article  ADS  Google Scholar 

  12. S.Y. Choi et al., Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking. Opt. Express 20, 5652–5657 (2012)

    Article  ADS  Google Scholar 

  13. U. Keller, Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003)

    Article  ADS  Google Scholar 

  14. A. Martinez, Z. Sun, Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photon 7, 842–845 (2013)

    Article  ADS  Google Scholar 

  15. Q. Bao et al., Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Func. Mater. 19, 3077–3083 (2009)

    Article  Google Scholar 

  16. B.C. Chakoumakos, D.G. Schlom, M. Urbanik, J. Luine, Thermal expansion of LaAlO[sub 3] and (La, Sr)(Al, Ta)O[sub 3], substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979 (1998)

    Article  ADS  Google Scholar 

  17. M. Sheik-Bahae, A.A.A. Said, T.-H. Wei, D.J.J. Hagan, E.W.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  18. L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum. Electron. 17, 299–338 (1993)

    Article  ADS  Google Scholar 

  19. D. Oka, Y. Hirose, S. Nakao, T. Fukumura, T. Hasegawa, Intrinsic high electrical conductivity of stoichiometric SrNbO3 epitaxial thin films. Phys. Rev. B 92, 205102 (2015)

    Article  ADS  Google Scholar 

  20. J. Lamure, J. Colas, Formation de roxyde double CaNbO3 du niobium (IV) et d’une varitt6 du niobate Ca2Nb2O7. C.R. Acad. Sci. 270, 700–701 (1970)

    Google Scholar 

  21. H. Hannerz, G. Svensson, S.Y. Istomin, O.G. D’Yachenko, Transmission electron microscopy and neutron powder diffraction studies of GdFeO3 Type SrNbO3. J. Solid State Chem. 147, 421–428 (1999)

    Article  ADS  Google Scholar 

  22. B.-Q. Hu et al., Transmittance and refractive index of the lanthanum strontium aluminium tantalum oxide crystal. Chin. Phys. Lett. 18, 278 (2001)

    Article  ADS  Google Scholar 

  23. Y.H. Lee, Y. Yan, L. Polavarapu, Q.-H. Xu, Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements. Appl. Phys. Lett. 95, 023105 (2009)

    Article  ADS  Google Scholar 

  24. T. Maurer et al., The beginnings of plasmomechanics: towards plasmonic strain sensors. Front. Mater. Sci. 9, 170–177 (2015)

    Article  Google Scholar 

  25. X. Ben, H.S. Park, Strain engineering enhancement of surface plasmon polariton propagation lengths for gold nanowires. Appl. Phys. Lett. 102, 041909 (2013)

    Article  ADS  Google Scholar 

  26. J. Wang, B. Gu, H.-T. Wang, X.-W. Ni, Z-scan analytical theory for material with saturable absorption and two-photon absorption. Opt. Commun. 283, 3525–3528 (2010)

    Article  ADS  Google Scholar 

  27. E. Koushki, M.H. Majles Ara, H. Akherat Doost, Z-scan technique for saturable absorption using diffraction method in γ-alumina nanoparticles. Appl. Phys. B 115, 279–284 (2013)

    Article  ADS  Google Scholar 

  28. Y.H. Lee, Y. Yan, L. Polavarapu, Q.-H.H. Xu, Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z -scan measurements. Appl. Phys. Lett. 95, 8–11 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Wan .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wan, D. (2017). The Nonlinear Optical Properties of MNbO3 (M = Ca, Sr, Ba) Thin Films. In: Crystal Structure,Electronic and Optical Properties of Epitaxial Alkaline Earth Niobate Thin Films. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-65912-1_6

Download citation

Publish with us

Policies and ethics