Skip to main content

New Host-Parasite Relationships by Host-Switching

  • Chapter
  • First Online:
Disease Ecology

Abstract

Host-switching is a natural phenomenon that many parasite species undergo as part of their life cycle; some are highly specialized, but others can readily change hosts to what is available in the community. Rapid environmental changes can open opportunities for host-switches that sometimes turn into important human and wildlife diseases. Island ecosystems contain large numbers of immunologically naive endemic species. The Galápagos Islands still have all their avian endemics extant; however, the ongoing introduction of animals to the archipelago could prompt extinctions of some endemics. In our first example, we tell the story of avian haemosporidian research in the Galápagos, which started with a small number of species, including conservation efforts to safeguard the little known endemic Galápagos dove (Zenaida galapagoensis); the work has since expanded to include almost all Galapagos endemics. Our second example will focus on Galápagos penguins (Spheniscus mendiculus) and Flightless cormorants (Phalacrocorax harrisi) infected by microfilariae (larvae of nematode worms). These two seabird species live in small populations mainly on the rocky coasts of Fernandina and Isabela Islands; they can experience devastating losses during El Niño periods due to food shortages. Fortunately, our studies show that despite high prevalence rates of these parasites, little or no health effect has been detected to date in these three avian endemics. Further monitoring and pathogen research is necessary, however, to rule out conservation concerns related to health effects due to the arrival of additional pathogens, or outbreaks of existing pathogens brought on by environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguirre AA, Ostfeld RS, Daszak P (2012) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, NY, p 639

    Google Scholar 

  • Alberti M (2008) Advances in urban ecology: integrating humans and ecological processes in urban ecosystems. Springer, New York, NY

    Book  Google Scholar 

  • Alexander AM, Finnoff DC, Shogren JF (2012) Human migration, border controls, and infectious disease emergence. In: Aguirre AA, Ostfeld RS, Daszak P (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, NY, pp 179–191

    Google Scholar 

  • Altizer S, Harvell D, Friedle E (2003) Rapid evolutionay dynamics and disease threats to biodiversity. Trends Ecol Evol 18:589–596

    Article  Google Scholar 

  • Atkinson CT, Woods KL, Dusek RJ, Sileo LS, Iko WM (1995) Wildlife disease and conservation in Hawaii: pathogenicity of avian malaria (Plasmodium relictum) in experimentally infected Iiwi (Vestiaria coccinea). Parasitology 111(S1):S59–S69

    Article  PubMed  Google Scholar 

  • Atkinson CT, Dusek RJ, Woods KL, Iko WM (2000) Pathogenicity of avian malaria in experimentally infected Hawaii Amakihi. J Wildl Dis 36:197–204

    Article  CAS  PubMed  Google Scholar 

  • Banks JC, Palma RL (2003) A new species and new host records of Austrogoniodes (Insecta: Phthiraptera: Philopteridae) from penguins (Aves: Sphenisciformes). N Z J Zool 30(1):69–75

    Article  Google Scholar 

  • Baptista LF, Trail PW, Horblit HM (1997) Family Columbidae (pigeons and doves). In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the world, Sandgrouse to cuckoos, vol 4. Lynx Edicions, Barcelona, pp 60–243

    Google Scholar 

  • Barnett BD (1985) Dogs of the Galapagos Islands: evolution, ecology, impact, and control. Dissertation, University of California–Davis

    Google Scholar 

  • Bartlett CM (2008) Filarioid nematodes. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases of wild birds. Wiley–Blackwell, Ames, IA, pp 439–462

    Google Scholar 

  • Bartlett CM, Anderson RC (1981) Occult filariasis in crows (Corvus brachyrhynchos brachyrhynchos Brehm) infected with Splendidofilaria caperata Hibler, 1964 (Nematoda: Filarioidea). J Wildl Dis 17(1):69–77

    Article  CAS  PubMed  Google Scholar 

  • Bataille A, Fournié G, Cruz M, Cedeño V, Parker PG, Cunningham AA, Goodman SJ (2012) Host selection and parasite infection in Aedes taeniorhynchus, endemic disease vector in the Galápagos Islands. Infect Genet Evol 12(8):1831–1841

    Article  PubMed  Google Scholar 

  • Bennett GF, Bishop MA, Peirce MA (1993) Checklist of the avian species of Plasmodium Marchiafava and Celli, 1885 (Apicomplexa) and their distribution by avian family and Wallacean life zones. Syst Parasitol 26:171–179

    Article  Google Scholar 

  • Bennett GF, Peirce MA, Earlé RA (1994) An annotated checklist of the valid avian species of Haemoproteus, Leucocytozoon (Apicomplexa, Haemosporida) and Hepatozoon (Apicomplexa, Haemogregarinidae). Syst Parasitol 29:61–73

    Article  Google Scholar 

  • Booth DT, Clayton DH, Block BA (1993) Experimental demonstration of the energetic cost of parasitism in free-ranging hosts. Proc R Soc Lond B Biol Sci 253:125–129

    Article  Google Scholar 

  • Borkent A (1991) The Ceratopogonidae (Diptera) of the Galápagos Islands, Ecuador with a discussion of their phylogenetic relationships and zoogeographic origins. Insect Syst Evol 22(1):97–122

    Article  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  PubMed  Google Scholar 

  • Bueno MG, Lopez RPG, de Menezes RMT, de Jesus C-NM, de Castro Lima GFM, de Sousa Araújo RA, Kirchgatter K (2010) Identification of Plasmodium relictum causing mortality in penguins (Spheniscus magellanicus) from São Paulo Zoo, Brazil. Vet Parasitol 173(1):123–127

    Article  PubMed  Google Scholar 

  • Bush SE, Clayton DH (2006) The role of body size in host specificity: reciprocal transfer experiments with feather lice. Evolution 60:2158–2167

    Article  PubMed  Google Scholar 

  • Causton CE, Peck SB, Sinclair BJ, Roque-Albelo L, Hodgson CJ, Landry B (2006) Alien insects: threats and implications for conservation of Galápagos Islands. Ann Entomol Soc Am 99(1):121–143

    Article  Google Scholar 

  • Chabaud AG, Ball GH (1964) Filaire cardiaque chez un Manchot des Galapogos. Ann Parasitol 39:621–626

    Article  CAS  Google Scholar 

  • Campbell K, Donlan CJ, Cruz F, Carrion V (2004) Eradication of feral goats Capra hircus from Pinta Island, Galápagos, Ecuador. Oryx 38(03):328–333

    Article  Google Scholar 

  • Cruz F, Donlan CJ, Campbell K, Carrion V (2005) Conservation action in the Galapagos: feral pig (Sus scrofa) eradication from Santiago Island. Biol Conserv 121(3):473–478

    Article  Google Scholar 

  • Davidar P, Morton ES (2006) Are multiple infections more severe for purple martins (Progne subis) than single infections? Auk 123(1):141–147

    Article  Google Scholar 

  • Fix AS, Waterhouse C, Greiner EC, Stoskopf MK (1988) Plasmodium relictum as a cause of avian malaria in wild-caught Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 24(4):610–619

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Gifford EW (1913) Expedition of the California Academy of Sciences to the Galápagos Islands, 1905–1906. Proc Calif Acad Sci 2:1–132

    Google Scholar 

  • Graczyk TK, Shaw ML, Cranfield MR, Beall FB (1994) Hematologic characteristics of avian malaria cases in African black-footed penguins (Spheniscus demersus) during the first outdoor exposure season. J Parasitol 80:302–308

    Article  CAS  PubMed  Google Scholar 

  • Grant PR, Grant KT (1979) Breeding and feeding ecology of the Galapagos Dove. Condor 81:397–403

    Article  Google Scholar 

  • Greiner EC, Bennett GF, White EM, Coombs RF (1975) Distribution of the avian hematozoa of North America. Can J Zool 53(12):1762–1787

    Article  CAS  PubMed  Google Scholar 

  • Grim KC, Van der Merwe E, Sullivan M, Parsons N, McCutchan TF, Cranfield M (2003) Plasmodium juxtanucleare associated with mortality in black-footed penguins (Spheniscus demersus) admitted to a rehabilitation center. J Zoo Wildl Med 34(3):250–255

    Article  PubMed  Google Scholar 

  • Gubanov NM (1954) The helminth fauna of animals of economic importance from the Sea of Okhotsk and the Pacific Ocean. Akad Nauk SSSR 7:380–381

    Google Scholar 

  • Harmon WA, Harbecker A, Clark WA (1985) Parasite studies in the Galapagos. Report to the Charles Darwin Research Station. Charles Darwin Research Station, Puerto Ayora, Santa Cruz, Galapagos, pp 35–39

    Google Scholar 

  • Harmon WM, Clark WA, Hawbecker AC, Stafford M (1987) Trichomonas gallinae in columbiform birds from the Galápagos Islands. J Wildl Dis 23:492–494

    Article  CAS  PubMed  Google Scholar 

  • Hatcher MJ, Dunn AM (2011) Parasites in ecological communities: from interactions to ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hernández-Lara C, González-García F, Santiago-Alarcon D (2017) Spatial and seasonal variation of avian malaria infections at places with different land uses within a neotropical montane forest matrix. Landsc Urban Plan 157:151

    Article  Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • Ibáñez-Bernal S, González-García F, Santiago-Alarcon D (2016) New bird host records for Ornithoctona fusciventris (diptera: hippoboscidae) in Mexico. S W Natural 60:377–381

    Google Scholar 

  • Irwin JC (1975) Mortality factors in Whistling Swans at Lake St. Clair, Ontario. J Wildl Dis 11(1):8–12

    Article  CAS  PubMed  Google Scholar 

  • IUCN red list (2015) Red list. http://www.iucnredlist.org. Accessed Apr 2 2016

  • Johnson KP, Clayton DH (2000) A molecular phylogeny of the dove genus Zenaida: mitochondrial and nuclear DNA sequences. Condor 102:864–870

    Article  Google Scholar 

  • Jones HI, Shellam GR (1999) Blood parasites in penguins, and their potential impact on conservation. Marine Ornithol 27:181–184

    Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:e82. https://doi.org/10.1371/journal.pbio.0040082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci U S A 103:11211–11216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Larrat S, Dallaire AD, Lair S (2012) Emaciation and larval filarioid nematode infection in boreal owls (Aegolius funereus). Avian Pathol 41(4):345–349

    Article  PubMed  Google Scholar 

  • Law JM, Tully TN, Stewart TB (1993) Verminous encephalitis apparently caused by the filarioid nematode Chandlerella quiscali in emus (Dromaius novaehollandiae). Avian Dis 32:597–601

    Article  Google Scholar 

  • Levin II, Colborn RE, Kim DH, Perlut NG, Renfrew RB, Parker PG (2016) Local parasite lineage sharing in temperate grassland birds provides clues about potential origins of Galapagos avian Plasmodium. Ecol Evol 6:716–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Levin I, Outlaw DC, Vargas FH, Parker PG (2009) Plasmodium blood parasite found in endangered Galapagos penguins (Spheniscus mendiculus). Biol Conserv 142:3191–3195

    Article  Google Scholar 

  • Levin II, Valkiūnas G, Santiago-Alarcon D, Cruz LL, Iezhova TA, O’Brien SL, Ricklefs RE (2011) Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int J Parasitol 41(10):1019–1027

    Article  PubMed  Google Scholar 

  • Levin I, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jimenez-Uzcategui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiūnas G, Parker PG (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377

    Article  CAS  PubMed  Google Scholar 

  • Levy JK, Crawford PC, Lappin MR, Dubovi EJ, Levy MG, Alleman R, Clifford EL (2008) Infectious diseases of dogs and cats on Isabela Island, Galapagos. J Vet Intern Med 22(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Matamoros Y, Vargas H, Byers O, and Lacy R (2006) Taller de Análisis de Viabilidad de la Población y el Hábitat del Pingüino de Galápagos (Spheniscus mendiculus) 8–11 de Febrero, 2005. Puerto Ayora, Galápagos, Ecuador. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, Minnesota, pp 1–167

    Google Scholar 

  • McQuistion TE (1991) Eimeria palumbi, a new coccidian parasite (apicomplexa, eimeriidae) from the galapagos dove (zenaida-galapagoensis). Trans Am Microsc Soc 110:178–181. https://doi.org/10.2307/3226755

    Article  Google Scholar 

  • Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc Lond B Biol Sci 267(1461):2507–2510

    Article  CAS  Google Scholar 

  • Merkel J, Jones HI, Whiteman NK, Gottdenker N, Travis EK, Miller RE, Parker PG (2007) Microfilariae in Galapagos penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi): genetics, morphology and prevalence. J Parasitol 93(3):495–503

    Article  CAS  PubMed  Google Scholar 

  • Monceau K, Gaillard M, Harrang E, Santiago-Alarcon D, Parker PG, Cezilly F, Wattier RA (2009) Twenty-three polymorphic microsatellite markers for the Caribbean endemic Zenaida dove, Zenaida aurita, and its conservation in related Zenaida species. Conserv Genet 10:1577–1581

    Article  CAS  Google Scholar 

  • Mosha FW, Subra R (1983) Salinity and breeding of Culex quinquefasciatus Say, Anopheles funestus Giles and Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) on the Kenya Coast. Entomol Méd Parasitol 21(3):135–138

    Google Scholar 

  • Padilla LR, Santiago-Alarcon D, Merkel J, Miller E, Parker PG (2004) Survey for haemoproteus spp, Trichomonas gallinae, Chlamydophila psittaci, and Salmonella spp. in the Galápagos Islands Columbiformes. J Zoo Wildl Med 35:60–64

    Article  PubMed  Google Scholar 

  • Padilla LR, Huyvaert KP, Merkel JF, Miller RE, Parker PG (2003) Hematology, Plasma Chemistry, Serology, and Chlamydophila status of free ranging adult waved albatrosses (Phoebastria irrorata) on Espanola, Galápagos Islands. J Zoo Wildl Med 34:278–283

    Article  PubMed  Google Scholar 

  • Padilla LR, Whiteman NK, Merkel J, Huyvaert KP, Parker PG (2006) Health assessment of seabirds on Isla Genovesa, Galápagos Islands. Ornithol Monogr 61:86–97

    Article  Google Scholar 

  • Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380

    Article  PubMed  Google Scholar 

  • Palinauskas V, Valkiūnas G, Križanauskienė A, Bensch S, Bolshakov CV (2009) Plasmodium relictum (lineage P-SGS1): further observation of effects on experimentally infected passeriform birds, with remarks on treatment with Malarone™. Exp Parasitol 123:134–139

    Article  CAS  PubMed  Google Scholar 

  • Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2011) Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the coinfection on experimentally infected passerine birds. Exp Parasitol 127:527–533

    Article  PubMed  Google Scholar 

  • Palma RL, Peck SB (2013) An annotated checklist of parasitic lice (Insecta: Phthiraptera) from the Galápagos Islands. Zootaxa 3627(1):001–087

    Article  Google Scholar 

  • Parker PG, Whiteman NK, Miller RE (2006) Conservation medicine on the Galápagos Islands: partnerships among behavioral, population, and veterinary scientists. Auk 123:625–638

    Article  Google Scholar 

  • Peck SB, Heraty J, Landry B, Sinclair BJ (1998) Introduced insect fauna of an oceanic archipelago: the Galápagos Islands, Ecuador. Am Entomol 44:218–237

    Article  Google Scholar 

  • Plowright RK, Cross PC, Tabor GM, Almberg E, Bienen L, Hudson PJ (2012) Climate change and infectious disease dynamics. In: Aguirre AA, Ostfeld RS, Daszak P (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, NY, pp 111–121

    Google Scholar 

  • Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, Princeton, NJ, p 332

    Google Scholar 

  • Prestwich AA (1959) The Galapagos Dove in freedom and captivity. Avic Mag 65:66–76

    Google Scholar 

  • Quillfeldt P, Arriero E, Martínez J, Masello JF, Merino S (2011) Prevalence of blood parasites in seabirds-a review. Front Zool 8(1):1

    Article  Google Scholar 

  • Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 53:111–119

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S (2014) Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci U S A 111:14816–14821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgway R (1897) Birds of the Galapagos archipelago. Proc US Nat Mus 19:459–670

    Article  Google Scholar 

  • Ryan F (2009) Virolution. Harper Collins Publishers, London

    Google Scholar 

  • Samour JH, Naldo J (2001) Serratospiculiasis in captive falcons in the Middle East: a review. J Avian Med Surg 15(1):2–9

    Article  Google Scholar 

  • Sano Y, Aoki M, Takahashi H, Miura M, Komatsu M, Abe Y, Kakino J, Itagaki T (2005) The first record of Dirofilaria immitis infection in a Humboldt penguin, Spheniscus humboldti. J Parasitol 91(5):1235–1237

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Alarcon D, Tanksley SM, Parker PG (2006) Morphological variation and genetic structure of Galapagos Dove (Zenaida galapagoensis) populations: issues in conservation for the Galapagos bird fauna. Wilson J Ornithol 118(2):194–207

    Article  Google Scholar 

  • Santiago-Alarcon D, Parker PG (2007) Sexual size dimorphism and morphological evidence supporting the recognition of two subspecies in the Galápagos Dove. Condor 109:132–141

    Article  Google Scholar 

  • Santiago-Alarcon D, Whiteman NK, Parker PG, Ricklefs RE, Valkiūnas G (2008) Patterns of parasite abundance and distribution in island populations of endemic Galápagos birds. J Parasitol 94:584–590

    Article  PubMed  Google Scholar 

  • Santiago-Alarcon D, Outlaw DC, Ricklefs RE (2010) Phylogenetic relationships of haemosporidian parasites in New World Columbiformes, with emphasis on the endemic Galapagos dove. Int J Parasitol 40(4):463–470

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Alarcon D, Havelka P, Schaefer HM, Segelbacher G (2012a) Bloodmeal analysis reveals avian Plasmodium infections and broad host preferences of Culicoides (Diptera: Ceratopogonidae) vectors. PLoS One 7(2):e31098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiago-Alarcon D, Palinauskas V, Schaefer HM (2012b) Diptera vectors of avian haemosporidian parasites: untangling parasite life cycles and their taxonomy. Biol Rev Camb Philos Soc 87:928–964

    Article  PubMed  Google Scholar 

  • Santiago-Alarcon D, Ricklefs RE, Parker PG (2012c) Parasitism in the endemic Galápagos Dove (Zenaida galapagoensis) and its relation to host genetic diversity and immune response. In: Paul E (ed) Emerging avian disease. Studies in avian biology, vol 42. University of California Press, Berkeley, CA, pp 31–42

    Chapter  Google Scholar 

  • Santiago-Alarcon D, Rodriguez-Ferraro A, Parker PG, Ricklefs RE (2014) Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds. Parasit Vectors 7(1):286

    Article  PubMed  PubMed Central  Google Scholar 

  • Santiago-Alarcon D, MacGregor-Fors I, Kühnert K, Segelbacher G, Schaefer HM (2015) Avian haemosporidian parasites in an urban forest and their relationship to bird size and abundance. Urban Ecosyst 19:331–346

    Article  Google Scholar 

  • Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH (2010) Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60:199–208

    Article  Google Scholar 

  • Siers S, Merkel J, Bataille A, Vargas FH, Parker PG (2010) Ecological correlates of microfilariae prevalence in endangered Galapagos birds. J Parasitol 96(2):259–272

    Article  PubMed  Google Scholar 

  • Simpson VR, MacKenzie G, Harris EA (1996) Fatal microfilarial infection in red billed blue magpies (Urocissa erythrorhynchus). Vet Rec 138(21):522–523

    Article  CAS  PubMed  Google Scholar 

  • Smith KF, Schloegel LM, Rosen GE (2012) Wildlife trade and the spread of disease. In: Aguirre AA, Ostfeld RS, Daszak P (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, NY, pp 151–163

    Google Scholar 

  • Soos C, Padilla L, Iglesias A, Gottdenker N, Cruz Bedon MC, Rios A, Parker PG (2008) Comparison of pathogens in broiler and backyard chickens on the Galapagos Islands: implications for transmission to wildlife. Auk 125:445–455

    Article  Google Scholar 

  • Sonin MD (1963) Filariata of birds in the Soviet Far East [Filyariiptits Sovetskogo Dal’nego Vostoka]. Trudy GELAN 13:227–249

    Google Scholar 

  • Suzán G, Esponda F, Carrasco-Hernández R, Aguirre AA (2012) Habitat fragmentation and infectious disease ecology. In: Aguirre AA, Ostfeld RS, Daszak P (eds) New directions in conservation medicine: applied cases of ecological health. Oxford University Press, New York, NY, pp 135–150

    Google Scholar 

  • Swarth HS (1931) The avifauna of the Galapagos Islands. Occas Pap Calif Acad Sci 18:5

    Google Scholar 

  • Szabo JK, Khwaja N, Garnett ST, Butchart SH (2012) Global patterns and drivers of avian extinctions at the species and subspecies level. PLoS One 7(10):e47080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarello W (2006) Serratospiculosis in falcons from Kuwait: incidence, pathogenicity and treatment with melarsomine and ivermectin. Parasite 13(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2006a) Hematology, serum chemistry, and serology of Galapagos penguins (Spheniscus mendiculus) in the Galapagos Islands, Ecuador. J Wildl Dis 42(3):625–632

    Article  CAS  PubMed  Google Scholar 

  • Travis EK, Vargas FH, Merkel J, Gottdenker N, Miller RE, Parker PG (2006b) Hematology, plasma chemistry, and serology of the flightless cormorant (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. J Wildl Dis 41:133–141

    Article  Google Scholar 

  • Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton, FL

    Google Scholar 

  • Valkiūnas G, Zickus T, Shapoval AP, Iezhova TA (2006) Effect of Haemoproteus belopolskyi (Haemosporida, Haemoproteidae) on body mass of the blackcap Sylvia atricapilla. J Parasitol 92:1123–1125

    Article  PubMed  Google Scholar 

  • Valkiūnas G, Santiago-Alarcon D, Levin II, Iezhova TA, Parker PG (2010) A new Haemoproteus species (Haemosporidia: Haemoproteidae) from the endemic galapagos dove Zenaida galapagoensis, with remarks on the parasite distribution, vectors, and molecular diagnostics. J Parasitol 96(4):783–792

    Article  PubMed  Google Scholar 

  • Valle CA (1995) Effective population size and demography of the rare flightless cormorants. Ecol Appl 5(3):601–601

    Article  Google Scholar 

  • van Riper C, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56(4):327–344

    Article  Google Scholar 

  • Vargas H, Lougheed C, Snell H (2005) Population size and trends of the Galapagos penguin Spheniscus mendiculus. Ibis 147:367–374

    Article  Google Scholar 

  • Vargas FH, Harrison S, Rea S, Macdonald DW (2006) Biological effects of El Niño on the Galápagos penguin. Biol Conserv 127(1):107–114

    Article  Google Scholar 

  • Warner R (1968) The role of introduced diseases in the extinction of the endemic Hawaiian avifauna. Condor 70:101–120

    Article  Google Scholar 

  • Whiteman NK, Santiago-Alarcon D, Johnson KP, Parker PG (2004) Differences in straggling rates between two genera of dove lice (Insecta: Phthiraptera) reinforce population genetic and cophylogenetic patterns. Int J Parasitol 34:1113–1119

    Article  PubMed  Google Scholar 

  • Whiteman NK, Parker PG (2005) Using parasites to infer host population history: a new rationale for parasite conservation. Anim Conserv 8:175–181

    Article  Google Scholar 

  • Whiteman NK, Goodman SJ, Sinclair BJ, Walsh TIM, Cunningham AA, Kramer LD, Parker PG (2005) Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis 147(4):844–847

    Article  Google Scholar 

  • Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galápagos birds and diseases: invasive pathogens as threats for Island species. Ecol Soc 9(1):5

    Article  Google Scholar 

  • Woodworth BL, Atkinson CT, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ, Henneman C, LeBrun J, Denette T, DeMots R, Kozar KL, Triglia D, Lease D, Gregor A, Smith T, Duffy D (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci U S A 102:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyatt KB, Campos PF, Gilbert MTP, Kolokotronis SO, Hynes WH, DeSalle R, Daszak P, MacPhee RD, Greenwood AD (2008) Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS One 3(11):e3602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the people involved in the different parts of field work, in particular A. Iglesias, G. Buitron, J. Rabenold, J. Bollmer, I. Levin, J. Higashiguchi, and S. O’Brien. We also thank people involved in microscopy work, B. Murray, M. Rosenthal, J. Allen, G. Valkiūnas, and B. Sinclair (vector identification) and A. Sandoval-Comte for preparing Figs. 7.2 and 7.5. The University of Missouri-St. Louis Animal Care and Use Committee and the Galapagos National Park Service, Ecuador approved all animal handling and sampling protocols. We thank the Charles Darwin Foundation for logistical support during our work in Galapagos. This work was supported by grants from the Whitney R. Harris World Ecology Center, Idea Wild, The Frank M. Chapman Memorial Fund of the American Museum of Natural History, The Field Research for Conservation program of the Saint Louis Zoo (FRC 05–2 and FRC 08–2), The Organization for Tropical Studies, and by The Des Lee Collaborative Vision in Zoological Studies from the University of Missouri-St. Louis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Santiago-Alarcon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Santiago-Alarcon, D., Merkel, J. (2018). New Host-Parasite Relationships by Host-Switching. In: Parker, P. (eds) Disease Ecology. Social and Ecological Interactions in the Galapagos Islands. Springer, Cham. https://doi.org/10.1007/978-3-319-65909-1_7

Download citation

Publish with us

Policies and ethics