Endophytic Phytohormones and Their Role in Plant Growth Promotion



Endophytes are microorganisms that almost every plant harbors. Endophytes often exist within the plant as members of communities comprised of a variety of different microbes. Endophytes are better adapted and protected by their host plants, and, in terms of possible practical application, are considered superior to their rhizospheric counterparts. Like the more well-studied rhizospheric plant growth-promoting bacteria (PGPB), endophytic PGPB utilize a number of different mechanisms to facilitate plant growth and productivity. To this end, various mechanisms used by endophytes are considered and discussed. Due to the environmentally friendly nature and plant growth promotion capabilities of endophytes, it is believed that endophytes have the potential to replace or augment many of the chemicals that are currently used in agricultural practice including fertilizers, pesticides, and chemical remediation agents for a number of environmental hazards.


Plant growth-promotion Endophytes Phytohormone Auxin Gibberellin Cytokinin ACC deaminase Ethylene 


  1. 1.
    Lynch JM, editor. The rhizoshere. Chichester, UK: Wiley-Interscience; 1990.Google Scholar
  2. 2.
    Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012;2012:963401.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rashid S, Charles TC, Glick BR. Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol. 2012;61:217–24.CrossRefGoogle Scholar
  4. 4.
    Reiter B, Sessitsch A. Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Can J Microbiol. 2006;52(2):140–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact. 2006;19(8):827–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Kobayashi DY, Palumbo JD. Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF, editors. Microbial endophytes. New York: Marcel Dekker, Inc.; 2000. p. 199–233.Google Scholar
  7. 7.
    Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 2008;179(2):318–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. Plant growth-promoting bacterial endophytes. Microbiol Res. 2016;183:92–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Ali S, Charles TC, Glick BR. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem. 2014a;80:160–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Ali S, Charles TC, Glick BR. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J Appl Microbiol. 2012;113(5):1139–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Grossmann K. Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci. 2010;66(2):113–20.PubMedGoogle Scholar
  12. 12.
    Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek. 2014;106(1):85–125.PubMedCrossRefGoogle Scholar
  13. 13.
    Hardoim PR, van Overbeek LS, Elsas JDv. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(10):463–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev. 2007;31(4):425–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell. 2011;23(2):550–66.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41(2):109–17.CrossRefGoogle Scholar
  17. 17.
    Patten CL, Glick BR. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol. 2002;48(7):635–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Apine OA, Jadhav JP. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol. 2011;110(5):1235–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol. 1995;21(1):1–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Davies PJ. Plant hormones: physiology, biochemistry, and molecular biology. Boston: Kluwer Academic; 1995.CrossRefGoogle Scholar
  21. 21.
    Kunkel BN, Chen Z. Virulence strategies of plant pathogenic bacteria. In: Dworkin M, editor. The prokaryotes. A handbook on biology of bacteria, ecophysiology and biochemistry. New York: Springer; 2006. p. 421–40.Google Scholar
  22. 22.
    Rezzonico E, Flury N, Meins F Jr, Beffa R. Transcriptional down-regulation by abscisic acid of pathogenesis-related β-1,3-glucanase genes in tobacco cell cultures. Plant Physiol. 1998;117(2):585–92.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Shinshi H, Mohnen D, Meins F Jr. Regulation of a plant pathogenesis-related enzyme: inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci U S A. 1987;84(1):89–93.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Miliūtė I, Buzaitė O. IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biologija. 2011;57(2):98–102.Google Scholar
  25. 25.
    Vendan RT, Yu YJ, Lee SH, Rhee YH. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol. 2010;48(5):559–65.PubMedCrossRefGoogle Scholar
  26. 26.
    Lacuna PT, Azevedo JL, editors. Endophytic bacteria: a biotechnological potential in agrobiology system. Berlin: Springer; 2013.Google Scholar
  27. 27.
    Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6(12):1244–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Assumpção LDC, Lacava PT, Dias AC, de Azevedo JL, Menten JOM. Diversity and biotechnological potential of endophytic bacterial community of soybean seeds. Pesqui Agropecu Bras. 2009;44(5):503–10.CrossRefGoogle Scholar
  29. 29.
    Etesami H, Alikhani HA, Hosseini HM. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX. 2015;2:72–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee I. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol. 2015;35(1):62–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 2009;70(15–16):1876–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Hedden P, Phillips AL, Rojas MC. Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul. 2002;20:319–31.CrossRefGoogle Scholar
  33. 33.
    Nett RS, Montanares M, Marcassa A, Lu X, Nagel R, Charles TC, Hedden P, Rojas MC, Peters RJ. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat Chem Biol. 2017;13(1):69–74.PubMedCrossRefGoogle Scholar
  34. 34.
    Atzorn R, Crozier A, Wheeler CT, Sandberg G. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta. 1988;175(4):532–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul. 1998;24(1):7–11.CrossRefGoogle Scholar
  36. 36.
    Bottini R, Fulchieri M, Pearce D, Pharis RP. Identification of gibberellins A1, A3, and Iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol. 1989;90(1):45–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Crozier A, Arruda P, Jasmin J, Monteiro AM, Sandberg G. Analysis of Indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Appl Environ Microbiol. 1988;54:2833–7.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Khan AL, Waqas M, Kang S, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H, Lee I. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol. 2014b;52(8):689–95.PubMedCrossRefGoogle Scholar
  39. 39.
    Afzal Khan S, Hamayun M, Kim H, Yoon H, Lee I, Kim J. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol Biotechnol. 2009;25(5):829–33.CrossRefGoogle Scholar
  40. 40.
    Hamayun M, Khan SA, Khan MA, Khan AL, Kang S, Kim S, Joo G, Lee I. Gibberellin production by pure cultures of a new strain of Aspergillus fumigatus. World J Microbiol Biotechnol. 2009a;25(10):1785–92.CrossRefGoogle Scholar
  41. 41.
    Hamayun M, Khan SA, Kim H, Chaudhary MF, Hwang Y, Shin D, Kim I, Lee B, Lee I. Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J Microbiol Biotechnol. 2009b;19(6):560–5.PubMedGoogle Scholar
  42. 42.
    Khan AL, Hamayun M, Kim Y, Kang S, Lee J, Lee I. Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem. 2011;46(2):440–7.CrossRefGoogle Scholar
  43. 43.
    Khan AL, Waqas M, Hussain J, Al-Harrasi A, Al-Rawahi A, Al-Hosni K, Kim M, Adnan M, Lee I. Endophytes Aspergillus caespitosus LK12 and Phoma sp. LK13 of Moringa peregrina produce gibberellins and improve rice plant growth. J Plant Interact. 2014a;9(1):731–7.CrossRefGoogle Scholar
  44. 44.
    Leitão AL, Enguita FJ. Gibberellins in Penicillium strains: challenges for endophyte-plant host interactions under salinity stress. Microbiol Res. 2016;183:8–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Waqas M, Khan AL, Kamran M, Hamayun M, Kang S, Kim Y, Lee I. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012;17(9):10754–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Greene EM. Cytokinin production by microorganisms. Bot Rev. 1980;46(1):25–74.CrossRefGoogle Scholar
  47. 47.
    Bhore SJ, Nithaya R, Loh CY. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation. 2010;5(5):191–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bhore SJ, Sathisha G. Screening of endophytic colonizing bacteria for cytokinin-like compounds: crude cell-free broth of endophytic colonizing bacteria is unsuitable in cucumber cotyledon bioassay. World J Agric Sci. 2010;6(4):345–52.Google Scholar
  49. 49.
    Xu J, Li X, Luo L. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol. 2012;78(22):8056–61.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Glick BR. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 2014;169(1):30–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci. 2007;26(5–6):227–42.CrossRefGoogle Scholar
  52. 52.
    Honma M. Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agric Biol Chem. 1985;49(3):567–71.Google Scholar
  53. 53.
    Honma M. Enzymatic determination of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 1983;47(3):617–8.Google Scholar
  54. 54.
    Honma M, Smmomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem. 1978;42(10):1825–31.Google Scholar
  55. 55.
    Honma M, Kawai J, Yamada M. Identification of the reactive sulfhydryl group of 1-aminocyclopropane-1-carboxylate deaminase. Biosci Biotechnol Biochem. 1993a;57(12):2090–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Honma M, Kirihata M, Uchimura Y, Ichimoto I. Enzymatic deamination of (±)-2-methyl- and (s)-2,2-dimethyl-1-aminocyclopropane-1-carboxylic acid. Biosci Biotechnol Biochem. 1993b;57(4):659–61.CrossRefGoogle Scholar
  57. 57.
    Hontzeas N, Saleh SS, Glick BR. Changes in gene expression in canola roots induced by ACC-deaminase- containing plant-growth-promoting bacteria. Mol Plant-Microbe Interact. 2004a;17(8):865–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta Proteins Proteomics. 2004b;1703(1):11–9.CrossRefGoogle Scholar
  59. 59.
    Jacobson CB, Pasternak JJ, Glick BR. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol. 1994;40(12):1019–25.CrossRefGoogle Scholar
  60. 60.
    Jia Y, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem. 1999;63(3):542–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M. Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem. 1998;123(6):1112–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ose T, Fujino A, Yao M, Watanabe N, Honma M, Tanaka I. Reaction intermediate structures of 1-aminocyclopropane-1-carboxylate deaminase: insight into PLP-dependent cyclopropane ring-opening reaction. J Biol Chem. 2003;278(42):41069–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Stearns JC, Woody OZ, McConkey BJ, Glick BR. Effects of bacterial ACC deaminase on Brassica napus gene expression. Mol Plant-Microbe Interact. 2012;25(5):668–76.PubMedCrossRefGoogle Scholar
  64. 64.
    Walsh C, Pascal RA Jr, Johnston M, Raines R, Dikshit D, Krantz A, Honma M. Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-l-carboxylate deaminase from Pseudomonas sp. Biochemistry. 1981;20(26):7509–19.PubMedCrossRefGoogle Scholar
  65. 65.
    Christen P, Metzler DE. Transaminases. New York: John Wiley and Sons; 1985.Google Scholar
  66. 66.
    Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 2005;251(1):1–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol. 1998;190(1):63–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Penrose DM, Moffatt BA, Glick BR. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol. 2001;47(1):77–80.PubMedCrossRefGoogle Scholar
  69. 69.
    Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol. 2005;55(3):1187–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Sun Y, Cheng Z, Glick BR. The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett. 2009;296(1):131–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Abeles FB, Morgan PW, Salveit ME. Ethylene in plant biology. 2nd ed. San Diego: Academic Press; 1992. p. 414.Google Scholar
  72. 72.
    Frankenberger WT, Arshad M. Microbial synthesis of auxins. In: Arshad M, Frankenberger WT, editors. Phytohormones in soils. New York: Dekker; 1995. p. 35–71.Google Scholar
  73. 73.
    Glick BR. Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol. 2004;56:291–312.PubMedCrossRefGoogle Scholar
  74. 74.
    Jackson MB. Ethylene in root growth and development. In: Mattoo AK, Suttle JC, editors. The plant hormone ethylene. Boca Raton, FL: CRC; 1991. p. 169–81.Google Scholar
  75. 75.
    Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodine C, Rangel WM, Nicolaus B, Vangronsveld J. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric. 2016;3:1.CrossRefGoogle Scholar
  76. 76.
    Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee I. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol. 2016;21:58–64.CrossRefGoogle Scholar
  77. 77.
    Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol. 2009;75(20):6581–90.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Raweekul W, Wuttitummaporn S, Sodchuen W, Kittiwongwattana C. Plant growth promotion by endophytic bacteria Isolated from rice (Oryza sativa). Thammasat Int J Sci Technol. 2016;21(1):6–17.Google Scholar
  79. 79.
    Jasim B, Joseph AA, John CM, Mathew J, Radhakrishnan EK. Isolation and characterization of plant growth promotingendophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech. 2014;4:197–204.PubMedCrossRefGoogle Scholar
  80. 80.
    Lowman JS, Lava-Chavez A, Kim-Dura S, Flinn B, Nowak J, Mei C. Switchgrass field performance on two soils as affected by bacterization of seedlings with Burkholderia phytofirmans strain PsJN. Bioenergy Res. 2015;8(1):440–9.CrossRefGoogle Scholar
  81. 81.
    Kim-Dura S, Lowman S, Zhang S, Mei C. Growth promotion of switchgrass by bacterial endophyte Pantoea agglomerans strain PaKM isolated from seeds. J Pathol Microbiol. 2016;1(2):1007.Google Scholar
  82. 82.
    Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E, Novello G, Glick BR, Ali S, Cantamessa S, D’Agostino G, Berta G. An 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma infection. Plant Biosyst. 2016;(151):331–340.Google Scholar
  83. 83.
    Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol. 2015;25(7):1119–28.PubMedCrossRefGoogle Scholar
  84. 84.
    Yaish MW, Antony I, Glick BR. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek. 2015;107(6):1519–32.PubMedCrossRefGoogle Scholar
  85. 85.
    Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A. ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul. 2016;35(2):553–64.CrossRefGoogle Scholar
  86. 86.
    Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol. 2007;53(11):1195–202.PubMedCrossRefGoogle Scholar
  87. 87.
    Jung HW, Kim W, Hwang BK. Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens, abiotic, and environmental stresses. Plant Cell Environ. 2003;26(6):915–28.PubMedCrossRefGoogle Scholar
  88. 88.
    Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW. Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact. 2005;18(2):169–78.PubMedCrossRefGoogle Scholar
  89. 89.
    Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol. 2014b;343:193–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Rahemi M, Jamali B. Carnation flower senescence as influenced by nickel, cobalt and silicon. J Biol Environ Sci. 2011;5:147–52.Google Scholar
  91. 91.
    Reid MS, Wu M. Ethylene and flower senescence. Plant Growth Regul. 1992;11(1):37–43.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.A&L BiologicalsAgroecological Research Services CentreLondonCanada
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations