Advertisement

Beam Shaping in Broad-Area Quantum Cascade Lasers Using Optical Feedback

  • Louise JumpertzEmail author
Chapter
  • 459 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, conventional and spatially-filtered optical feedback will be applied to a 32\(\upmu \mathrm {m}\)-wide QCL. The high performances of this QCL emitting around 4.6\(\upmu \mathrm {m}\) will first be detailed. In particular, we will report that this laser presents high mean and peak powers, efficient heat dissipation allowing operation at high duty cycle, as well as high quality far-field over the whole range of operation. In a second part, the impact of optical feedback on the laser near-field as a function of the feedback mirror angle will be studied, showing significant modification of the near-field pattern. Strong amelioration of the profile is achieved in the case of centered feedback using spatial filtering. Furthermore, the response of a QCL with poor far-field quality to feedback will be investigated, as well as the influence of the laser width by comparing to 14\(\upmu \mathrm {m}\)-wide devices.

Keywords

Optical Feedback Feedback Mirror Near-field Profile External Cavity Length Feedback Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Bai, S. Slivken, S. Darvish, A. Haddadi, B. Gokden, M. Razeghi, High power broad area quantum cascade lasers. Appl. Phys. Lett. 95(22), 221104 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    I. Vurgaftman, J.R. Meyer, Photonic-crystal distributed-feedback quantum cascade lasers. IEEE J. Quant. Electron. 38(6), 592–602 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi, Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at \(\lambda \sim \) 4.36 \(\upmu \)m. Appl. Phys. Lett. 97(13), 1112 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Bai, S. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, M. Razeghi, Electrically pumped photonic crystal distributed feedback quantum cascade lasers. Appl. Phys. Lett. 91(14), 141123 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Q. Lu, W. Zhang, L. Wang, F. Liu, Z. Wang, Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique. Electron. Lett. 45(1), 1 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Bai, S. Slivken, Q. Lu, N. Bandyopadhyay, M. Razeghi, Angled cavity broad area quantum cascade lasers. Appl. Phys. Lett. 101(8), 081106 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Ahn, C. Schwarzer, T. Zederbauer, D.C. MacFarland, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser, High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet. Appl. Phys. Lett. 104(5), 051101 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, M. Razeghi, High brightness angled cavity quantum cascade lasers. Appl. Phys. Lett. 106(9), 091105 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, F. Capasso, Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K. Opt. Express 19(17), 16 229–16 235 (2011)Google Scholar
  10. 10.
    A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C.K.N. Patel, Tapered 4.7 \(\upmu \)m quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power. Opt. Express 20(4), 4382–4388 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G. De Naurois, M. Carras, B. Simozrag, O. Patard, F. Alexandre, X. Marcadet, Coherent quantum cascade laser micro-stripe arrays. AIP Adv. 1(3), 032165 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lourdudoss, W. Metaferia, C. Junesand, B. Manavaimaran, S. Ferré, B. Simozrag, M. Carras, R. Peretti, V. Liverini, M. Beck et al., Hydride vapour phase epitaxy assisted buried heterostructure quantum cascade lasers for sensing applications, in SPIE OPTO (International Society for Optics and Photonics, 2015), pp. 93 700D–93 700DGoogle Scholar
  13. 13.
    J. Kirch, C.-C. Chang, C. Boyle, L. Mawst, D. Lindberg III, T. Earles, D. Botez, 5.5 W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers. Appl. Phys. Lett. 106(6), 061113 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Marciante, G.P. Agrawal, Nonlinear mechanisms of filamentation in broad-area semiconductor lasers. IEEE J. Quant. Electron. 32(4), 590–596 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Mandre, I. Fischer, W. Elsässer, Spatiotemporal emission dynamics of a broad-area semiconductor laser in an external cavity: stabilization and feedback-induced instabilities. Opt. Commun. 244, 355–365 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    T. Tachikawa, S. Takimoto, R. Shogenji, J. Ohtsubo, Dynamics of broad-area semiconductor lasers with short optical feedback. IEEE J. Quant. Electron. 46(2), 140–149 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Takeda, R. Shogenji, J. Ohtsubo, Spatial-mode analysis in broad-area semiconductor lasers subjected to optical feedback. Opt. Rev. 20(4), 308–313 (2013)CrossRefGoogle Scholar
  18. 18.
    G.C. Dente, Low confinement factors for suppressed filaments in semiconductor lasers. IEEE J. Quant. Electron. 37(12), 1650–1653 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J. Martin-Regalado, G.H.M. van Tartwijk, S. Balle, M. san Miguel, Mode control and pattern stabilization in broad-area lasers by optical feedback. Phys. Rev. A 54(6), 5386–5393 (1996)Google Scholar
  20. 20.
    E. Wolf (ed.), Progress in Optics, vol. 44 (Elsevier, 2002)Google Scholar
  21. 21.
    Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J. Faist, Quantum Cascade Lasers (Oxford University Press, 2013)Google Scholar
  23. 23.
    A. Szerling, P. Karbownik, K. Kosiel, J. Kubacka-Traczyk, E. Pruszynska-Karbownik, M. Pluska, M. Bugajski, Mid-infrared GaAs/AlGaAs quantum cascade lasers technology. Acta Phys. Pol. A 116, S45–S48 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Friedli, H. Sigg, B. Hinkov, A. Hugi, S. Riedi, M. Beck, J. Faist, Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett. 102, 222104 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A.K. Wojcik, K.B. Crozier, A. Belyanin, F. Capasso, Coherent coupling of multiple transverse modes in quantum cascade lasers. Phys. Rev. Lett. 102(1), 013901 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, M. Razeghi, Beam steering in high-power CW quantum cascade lasers. IEEE J. Quant. Electron. 41(6), 833–841 (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Communications and ElectronicsTélécom ParisTechParisFrance
  2. 2.mirSensePalaiseauFrance

Personalised recommendations