Skip to main content

Impact of Optical Feedback on Quantum Cascade Lasers

  • Chapter
  • First Online:
  • 665 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In quantum cascade lasers, there have been very few comprehensive studies on optical feedback. In this chapter,we propose to study both experimentally and numerically the impact of optical feedback on the static and dynamical properties of a QCL. In particular, the birth of optical instabilities leading to temporal chaos is reported for the first time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Hugi, R. Maulini, J. Faist, External cavity quantum cascade laser. Semicond. Sci. Tech. 25(8), 083001 (2010)

    Article  ADS  Google Scholar 

  2. C. Juretzka, S. Breuer, L. Drzewietzki, F. Schad, M. Carras, W. Elsässer, 9.5 dB relative intensity noise reduction in quantum cascade laser by detuned loading. Electron. Lett. 49(24), 1548–1550 (2013)

    Article  Google Scholar 

  3. D. Weidmann, K. Smith, B. Ellison, Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 \(\upmu \)m continuous-wave distributed-feedback quantum-cascade laser. Appl. Optics 46(6), 947–953 (2007)

    Article  ADS  Google Scholar 

  4. F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M.S. Vitiello, H.E. Beere, D.A. Ritchie, G. Scamarcio, Intrinsic stability of quantum cascade lasers against optical feedback. Opt. Express, 21(11): 13 748–13 757 (2013)

    Google Scholar 

  5. L.L. Columbo, M. Brambilla, Multimode regimes in quantum cascade lasers with optical feedback. Opt. Express, 22(9), 10 105–10 118 (2014)

    Google Scholar 

  6. C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A.D. Stone, J. Faist, D.L. Sivco, A.Y. Cho, High-power directional emission from microlasers with chaotic resonators. Science 280(5369), 1556–1564 (1998)

    Article  ADS  Google Scholar 

  7. L.L. Bonilla, H.T. Grahn, Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys. 68, 577–683 (2005)

    Article  ADS  Google Scholar 

  8. S. Donati, Laser interferometry by induced modulation of the cavity field. J. Appl. Phys. 49(2), 495–497 (1978)

    Article  ADS  Google Scholar 

  9. G. Giuliani, M. Norgia, S. Donati, T. Bosch, Laser diode self-mixing technique for sensing applications. J. Opt. A Pure Appl. Opt. 4, 283–294 (2002)

    Article  ADS  Google Scholar 

  10. Y. Yu, G. Giuliani, S. Donati, Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect. IEEE Photon. Technol. Lett. 16(4), 990–992 (2004)

    Article  ADS  Google Scholar 

  11. J. von Staden, T. Gensty, M. Peil, W. Elsässer, G. Giuliani, C. Mann, Measurements of the \(\alpha \) factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. Opt. Lett. 31(17), 2574–2576 (2006)

    Article  ADS  Google Scholar 

  12. J. Huang, L.W. Casperson, Gain and saturation in semiconductor lasers. Opt. Quant. Electron. 25, 369–390 (1993)

    Article  Google Scholar 

  13. F. Grillot, B. Dagens, J.-G. Provost, H. Su, L.F. Lester, Gain compression and above-threshold linewidth enhancement factor in 1.3 \(\upmu \)m InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 44(10), 946–951 (2008)

    Article  ADS  Google Scholar 

  14. F. Girardin, G.H. Duan, P. Gallion, Linewidth rebroadening due to nonlinear gain and index induced by carrier heating in strained quantum-well lasers. IEEE Photon. Technol. Lett. 8(3), 334–336 (1996)

    Article  ADS  Google Scholar 

  15. L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. (Wiley, New York, 2012)

    Google Scholar 

  16. A. Hangauer, G. Wysocki, Gain compression and linewidth enhancement factor in mid-IR quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 21(6), 1200411 (2015)

    Article  Google Scholar 

  17. A. Gordon, C.Y. Wang, L. Diehl, F.X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H.C. Liu, H. Scneider, T. Maier, M. Troccoli, J. Faist, F. Capasso, Multimode regimes in quantum cascade lasers: from coherent instabilities to spatial hole burning. Phys. Rev. A 77, 053804 (2008)

    Article  ADS  Google Scholar 

  18. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M.E. Amraoui, J.L. Adam, T. Chartier, D. Mechzin, L. Brilland, Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt. Express, 18: 26 647–26 654 (2010)

    Google Scholar 

  19. P. Toupin, L. Brilland, G. Renversez, J. Troles, All-solid all-chalcogenide microstructured optical fiber. Opt. Express, 21: 14 643–14 648 (2013)

    Google Scholar 

  20. R.W. Tkach, A.R. Chraplyvy, Regimes of feedback effects in 1.5 \(\upmu \)m distributed feedback lasers. J. Lightwave Technol. 4(11), 1655–1661 (1986)

    Article  ADS  Google Scholar 

  21. S.H. Strogatz, Nonlinear Dynamics and Chaos. (Perseus Books, Cambridge, 1994)

    Google Scholar 

  22. A. Hangauer, G. Spinner, M. Nikodem, G. Wysocki, High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser. Opt. Express, 22(19): 23 439–23 455 (2014)

    Google Scholar 

  23. G. Friart, G. van der Sande, G. Verschaffelt, T. Erneux, Analytical stability boundaries for quantum cascade lasers subject to optical feedback. Phys. Rev. E 93(5), 052201 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Jumpertz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jumpertz, L. (2017). Impact of Optical Feedback on Quantum Cascade Lasers. In: Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-65879-7_4

Download citation

Publish with us

Policies and ethics