Impact of Optical Feedback on Quantum Cascade Lasers

  • Louise JumpertzEmail author
Part of the Springer Theses book series (Springer Theses)


In quantum cascade lasers, there have been very few comprehensive studies on optical feedback. In this chapter,we propose to study both experimentally and numerically the impact of optical feedback on the static and dynamical properties of a QCL. In particular, the birth of optical instabilities leading to temporal chaos is reported for the first time.


  1. 1.
    A. Hugi, R. Maulini, J. Faist, External cavity quantum cascade laser. Semicond. Sci. Tech. 25(8), 083001 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C. Juretzka, S. Breuer, L. Drzewietzki, F. Schad, M. Carras, W. Elsässer, 9.5 dB relative intensity noise reduction in quantum cascade laser by detuned loading. Electron. Lett. 49(24), 1548–1550 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Weidmann, K. Smith, B. Ellison, Experimental investigation of high-frequency noise and optical feedback effects using a 9.7 \(\upmu \)m continuous-wave distributed-feedback quantum-cascade laser. Appl. Optics 46(6), 947–953 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    F.P. Mezzapesa, L.L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M.S. Vitiello, H.E. Beere, D.A. Ritchie, G. Scamarcio, Intrinsic stability of quantum cascade lasers against optical feedback. Opt. Express, 21(11): 13 748–13 757 (2013)Google Scholar
  5. 5.
    L.L. Columbo, M. Brambilla, Multimode regimes in quantum cascade lasers with optical feedback. Opt. Express, 22(9), 10 105–10 118 (2014)Google Scholar
  6. 6.
    C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A.D. Stone, J. Faist, D.L. Sivco, A.Y. Cho, High-power directional emission from microlasers with chaotic resonators. Science 280(5369), 1556–1564 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    L.L. Bonilla, H.T. Grahn, Non-linear dynamics of semiconductor superlattices. Rep. Prog. Phys. 68, 577–683 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S. Donati, Laser interferometry by induced modulation of the cavity field. J. Appl. Phys. 49(2), 495–497 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    G. Giuliani, M. Norgia, S. Donati, T. Bosch, Laser diode self-mixing technique for sensing applications. J. Opt. A Pure Appl. Opt. 4, 283–294 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yu, G. Giuliani, S. Donati, Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect. IEEE Photon. Technol. Lett. 16(4), 990–992 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J. von Staden, T. Gensty, M. Peil, W. Elsässer, G. Giuliani, C. Mann, Measurements of the \(\alpha \) factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. Opt. Lett. 31(17), 2574–2576 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J. Huang, L.W. Casperson, Gain and saturation in semiconductor lasers. Opt. Quant. Electron. 25, 369–390 (1993)CrossRefGoogle Scholar
  13. 13.
    F. Grillot, B. Dagens, J.-G. Provost, H. Su, L.F. Lester, Gain compression and above-threshold linewidth enhancement factor in 1.3 \(\upmu \)m InAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 44(10), 946–951 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    F. Girardin, G.H. Duan, P. Gallion, Linewidth rebroadening due to nonlinear gain and index induced by carrier heating in strained quantum-well lasers. IEEE Photon. Technol. Lett. 8(3), 334–336 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    L.A. Coldren, S.W. Corzine, M.L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits. (Wiley, New York, 2012)Google Scholar
  16. 16.
    A. Hangauer, G. Wysocki, Gain compression and linewidth enhancement factor in mid-IR quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 21(6), 1200411 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Gordon, C.Y. Wang, L. Diehl, F.X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H.C. Liu, H. Scneider, T. Maier, M. Troccoli, J. Faist, F. Capasso, Multimode regimes in quantum cascade lasers: from coherent instabilities to spatial hole burning. Phys. Rev. A 77, 053804 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M.E. Amraoui, J.L. Adam, T. Chartier, D. Mechzin, L. Brilland, Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt. Express, 18: 26 647–26 654 (2010)Google Scholar
  19. 19.
    P. Toupin, L. Brilland, G. Renversez, J. Troles, All-solid all-chalcogenide microstructured optical fiber. Opt. Express, 21: 14 643–14 648 (2013)Google Scholar
  20. 20.
    R.W. Tkach, A.R. Chraplyvy, Regimes of feedback effects in 1.5 \(\upmu \)m distributed feedback lasers. J. Lightwave Technol. 4(11), 1655–1661 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Strogatz, Nonlinear Dynamics and Chaos. (Perseus Books, Cambridge, 1994)Google Scholar
  22. 22.
    A. Hangauer, G. Spinner, M. Nikodem, G. Wysocki, High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser. Opt. Express, 22(19): 23 439–23 455 (2014)Google Scholar
  23. 23.
    G. Friart, G. van der Sande, G. Verschaffelt, T. Erneux, Analytical stability boundaries for quantum cascade lasers subject to optical feedback. Phys. Rev. E 93(5), 052201 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Communications and ElectronicsTélécom ParisTechParisFrance
  2. 2.mirSensePalaiseauFrance

Personalised recommendations