Artificial Viscosity Discontinuous Galerkin Spectral Element Method for the Baer-Nunziato Equations

  • C. RedondoEmail author
  • F. Fraysse
  • G. Rubio
  • E. Valero
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)


This paper is devoted to the numerical discretization of the hyperbolic two-phase flow model of Baer and Nunziato. Special attention is paid to the discretization of interface flux functions in the framework of Discontinuous Galerkin approach, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. A discretization scheme is proposed in a Discontinuous Galerkin framework following the criterion of Abgrall. A stabilization technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and tested on a bench of discontinuous test cases.



This work has been partially supported by REPSOL under the research grant P130120150 monitored by Dr. Angel Rivero. This work has been partially supported by Ministerio de Economía y Competitividad (Spain) under the research grant TRA2015-67679-C2-2-R. The authors would like to thank the anonymous reviewers for their comments and suggestions which greatly improved this work.


  1. 1.
    R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Baer, J. Nunziato, A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12, 861–889 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    B. Baldwin, R. MacCormack, Interaction of strong shock wave with turbulent boundary layer, in Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics (Springer, Berlin, 1975), pp. 51–56Google Scholar
  5. 5.
    K. Black, Spectral element approximation of convection–diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral methods, in Fundamentals in Single Domains (Springer, Berlin, 2006)zbMATHGoogle Scholar
  7. 7.
    A. Chaudhuri, G. Jacobs, W. Don, H. Abbassi, F. Mashayek, Explicit discontinuous spectral element method with entropy generation based artificial viscosity for shocked viscous flows. J. Comput. Phys. 332, 99–117 (2017)CrossRefMathSciNetGoogle Scholar
  8. 8.
    B. Cockburn, G.E. Karniadakis, C.W. Shu, The Development of Discontinuous Galerkin Methods (Springer, Berlin, 2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    J. Douglas, T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing Methods in Applied Sciences (Springer, Berlin, 1976), pp. 207–216Google Scholar
  11. 11.
    F. Fraysse, C. Redondo, G. Rubio, E. Valero, Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity. J. Comput. Phys. 326, 805–827 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1), 83–131 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (SIAM, Philadelphia, 1977)CrossRefzbMATHGoogle Scholar
  14. 14.
    D. Gottlieb, C.W. Shu, On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (Springer Science and Business Media, New York, 2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    T.J. Hughes, L. Franca, M. Mallet, A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54(2), 223–234 (1986)zbMATHGoogle Scholar
  17. 17.
    A. Jameson, W. Schmidt, E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, in 14th fluid and Plasma Dynamics Conference (1981), p. 1259Google Scholar
  18. 18.
    R.M. Kirby, S.J. Sherwin, Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling. Comput. Methods Appl. Mech. Eng. 195(23), 3128–3144 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    A. Klöckner, T. Warburton, J.S. Hesthaven, Viscous shock capturing in a time-explicit discontinuous Galerkin method. Math. Model. Nat. Phenom. 6(3), 57–83 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation. J. Comput. Phys. 306, 216–236 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Comparisons of p-adaptation strategies based on truncation-and discretisation-errors for high order discontinuous Galerkin methods. Comput. Fluids 139, 36–46 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (Springer, Berlin, 2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    P.D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    C. Parès, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    P.O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2006-112 (2006)Google Scholar
  26. 26.
    P. Rasetarinera, M.Y. Hussaini, An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172(2), 718–738 (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)Google Scholar
  28. 28.
    V.V. Rusanov, The calculation of the interaction of non-stationary shock waves and obstacles. USSR Comput. Math. Math. Phys. 1(2), 304–320 (1961)CrossRefGoogle Scholar
  29. 29.
    R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    D. Schwendeman, C. Wahle, A. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212(2), 490–526 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    E. Tadmor, Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    S. Tokareva, E. Toro, HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229(10), 3573–3604 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (Springer, Berlin, 2009)Google Scholar
  34. 34.
    J. Von Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Z. Wang, High-order methods for the Euler and Navier–Stokes equations on unstructured grids. Prog. Aerosp. Sci. 43(1), 1–41 (2007)CrossRefMathSciNetGoogle Scholar
  36. 36.
    A.R. Winters, D.A. Kopriva, High-order local time stepping on moving DG spectral element meshes. J. Sci. Comput. 58(1), 176–202 (2014)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Aeronautics (ETSIAE Universidad Politécnica de Madrid)MadridSpain
  2. 2.RS2NSaint ZacharieFrance

Personalised recommendations