Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 119))

  • 1119 Accesses

Abstract

We propose a new adaptive numerical quadrature procedure which includes both local subdivision of the integration domain, as well as local variation of the number of quadrature points employed on each subinterval. In this way we aim to account for local smoothness properties of the integrand as effectively as possible, and thereby achieve highly accurate results in a very efficient manner. Indeed, this idea originates from so-called hp-version finite element methods which are known to deliver high-order convergence rates, even for nonsmooth functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Bogaert, Iteration-free computation of Gauss-Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 36(3), A1008–A1026 (2014). MR 3209728

    Google Scholar 

  2. G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing. Volume I. Society for Industrial and Applied Mathematics (SIAM, Philadelphia, PA, 2008)

    Google Scholar 

  3. P.J. Davis, P. Rabinowitz, Methods of Numerical Integration (Dover Publications, Inc., Mineola, NY, 2007), Corrected reprint of the 2nd edn. (1984)

    Google Scholar 

  4. L. Demkowicz, Computing withhp-Adaptive Finite Elements. Volume 1. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series (Chapman & Hall/CRC, Boca Raton, FL, 2007). One and two dimensional elliptic and Maxwell problems

    Google Scholar 

  5. R. DeVore, K. Scherer, Variable Knot, Variable Degree Spline Approximation to x β. Quantitative Approximation (Proceedings of International Symposium, Bonn, 1979) (Academic, New York, London, 1980), pp. 121–131

    Google Scholar 

  6. T. Fankhauser, T.P. Wihler, M. Wirz, The hp-adaptive FEM based on continuous Sobolev embeddings: isotropic refinements. Comput. Math. Appl. 67(4), 854–868 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Gander, W. Gautschi, Adaptive quadrature—revisited. BIT 40(1), 84–101 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Gui, I. Babuška, The h, p and hp versions of the finite element method in one-dimension, Parts I–III. Numer. Math. 49(6), 577–683 (1986)

    Article  MATH  Google Scholar 

  9. N. Hale, Spike integral (2010). http://www.chebfun.org/examples/quad/SpikeIntegral.html

    Google Scholar 

  10. N. Hale, L.N. Trefethen, Chebfun and numerical quadrature. Sci. China Math. 55(9), 1749–1760 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Houston, E. Süli, A note on the design of hp–adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(2–5), 229–243 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. J.M. Melenk, B.I. Wohlmuth. On residual-based a posteriori error estimation in hp-FEM. Adv. Comp. Math. 15, 311–331 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. W.F. Mitchell, M.A. McClain, A comparison of hp-adaptive strategies for elliptic partial differential equations. ACM Trans. Math. Softw. 41, 2:1–2:39 (2014)

    Google Scholar 

  14. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes. The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  15. K. Scherer, On optimal global error bounds obtained by scaled local error estimates. Numer. Math. 36(2), 151–176 (1980/1981)

    Google Scholar 

  16. D. Schötzau, C. Schwab, T.P. Wihler, hp-DGFEM for second-order mixed elliptic problems in polyhedra. Math. Comp. 85(299), 1051–1083, (2016).

    Google Scholar 

  17. C. Schwab, Variable order composite quadrature of singular and nearly singular integrals. Computing 53(2), 173–194 (1994) MR 1300776 (96a:65035)

    Google Scholar 

  18. C. Schwab, p- and hp-FEM – Theory and Application to Solid and Fluid Mechanics (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  19. L.F. Shampine, Vectorized adaptive quadrature in Matlab. J. Comput. Appl. Math. 211(2), 131–140 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Solin, K. Segeth, I. Dolezel, Higher-Order Finite Element Methods. Studies in Advanced Mathematics (Chapman & Hall/CRC, Boca Raton, London, 2004)

    Google Scholar 

  21. T.P. Wihler, An hp-adaptive strategy based on continuous Sobolev embeddings. J. Comput. Appl. Math. 235, 2731–2739 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thomas P. Wihler acknowledges the financial support by the Swiss National Science Foundation (SNF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Houston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Houston, P., Wihler, T.P. (2017). An Adaptive Variable Order Quadrature Strategy. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_38

Download citation

Publish with us

Policies and ethics