MediaSync pp 629-648 | Cite as

Watermarking and Fingerprinting

  • Rolf Bardeli


An important task in media synchronisation is to find out the playback position of a running media stream. Only based on this information, it is possible to provide additional information or additional streams synchronised to that running stream. This chapter gives an overview of two techniques for solving this basic task: watermarking and fingerprinting. In the former, synchronisation information is embedded imperceptibly in the media stream. In the latter, an excerpt of the media stream is identified based on an index of compact representations of known media content. In both cases, there are specific approaches for audio, image, and video signals. In all cases, the robustness of the methods may be increased by using error correcting codes.


Fingerprinting Watermarking Error correcting codes Second screen Content-based indexing 


  1. 1.
    Allamanche, E., Herre, J., Hellmuth, O., Fröba, B., Cremer, M.: Audioid: towards content-based identification of audio material. In: 110th AES ConventionGoogle Scholar
  2. 2.
    Arzt, A., Widmer, G., Böck, S., Sonnleitner, R., Frostel, H.: Towards a complete classical music companion. In: Raedt, L., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.), ECAI, Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 67–72. IOS Press (2012)Google Scholar
  3. 3.
    Baras, C., Moreau, N., Dymarski, P.: Controlling the inaudibility and maximizing the robustness in an audio annotation watermarking system. IEEE Trans. Audio, Speech, Lang. Process. 14(5), 1772–1782 (2006)CrossRefGoogle Scholar
  4. 4.
    Bardeli, R., Kurth, F.: Robust identification of time-scaled audio. In: Audio Engineering Society Conference: 25th International Conference: Metadata for Audio, Jun 2004Google Scholar
  5. 5.
    Bardeli, R., Schwenninger, J., Stein, D.: Audio fingerprinting for media synchronisation and duplicate detection. In: Media Synchronisation Workshop (2012)Google Scholar
  6. 6.
    Böck, S., Schedl, M.: Polyphonic piano note transcription with recurrent neural networks. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 121–124, March 2012Google Scholar
  7. 7.
    Cano, P., Batlle, E., Mayer, H., Neuschmied, H.: Robust sound modeling for song detection in broadcast audio. In: Audio Engineering Society Convention, vol. 112, Apr 2002Google Scholar
  8. 8.
    Cano, P., Batlle, E., Kalker, T., Haitsma, J.: A review of audio fingerprinting. VLSI Signal Process. 41(3), 271–284 (2005)Google Scholar
  9. 9.
    Clausen, M., Kurth, F.: A unified approach to content-based and fault-tolerant music recognition. IEEE Trans. Multimedia 6(5), 717–731 (2004)CrossRefGoogle Scholar
  10. 10.
    Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Trans. Multimedia 8(6), 1190–1208 (2006)CrossRefGoogle Scholar
  11. 11.
    Coskun, B., Sankur, B.: Robust video hash extraction. In: 2004 12th European Signal Processing Conference, September 6-10, 2004, pp. 2295–2298. Vienna, Austria (2004)Google Scholar
  12. 12.
    Deguillaume, F., Csurka, G., O’Ruanaidh, J.J., Pun, T.: Robust 3d DFT video watermarking. In: Electronic Imaging’99, pp. 113–124. International Society for Optics and Photonics (1999)Google Scholar
  13. 13.
    Fastl, H., Zwicker, E.: Psychoacoustics: facts and models. In: Springer Series in Information Sciences. Springer, New York (1998)Google Scholar
  14. 14.
    Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D., Lopez-Molina, C., Garca, S., Bentez, J.M., Pagola, M., Barrenechea, E., Bustince, H., Herrera, F.: A survey of fingerprint classification part i: taxonomies on feature extraction methods and learning models. Knowl. Based Syst. 81, 76–97 (2015)Google Scholar
  15. 15.
    Galar, M., Derrac, J., Peralta, D., Triguero, I., Paternain, D., Lopez-Molina, C., Garca, S., Bentez, J.M., Pagola, M., Barrenechea, E., Bustince, H., Herrera, F.: Experimental analysis and ensemble proposal. A survey of fingerprint classification part ii. Knowl. Based Syst. 81, 98–116 (2015)Google Scholar
  16. 16.
    Haitsma, J., Kalker, T.: A highly robust audio fingerprinting system. ISMIR 107–115 (2002) (2002)Google Scholar
  17. 17.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 26(2), 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hampapur, A., Hyun, K., Bolle, R.M.: Comparison of sequence matching techniques for video copy detection. In: Storage and Retrieval for Media Databases 2002, January 23, 2002, pp. 194–201. San Jose, CA, USA (2002)Google Scholar
  19. 19.
    Hua, G., Huang, J., Shi, Y.Q., Goh, J., Vrizlynn, L.L.: Thing. Twenty years of digital audio watermarking—a comprehensive review. Signal Process. 128, 222–242 (2016)Google Scholar
  20. 20.
    Kim, H.-G., Cho, H.-S., Kim, J.Y.: Robust audio fingerprinting using peak-pair-based hash of non-repeating foreground audio in a real environment. Clust. Comput. 19(1), 315–323 (2016)Google Scholar
  21. 21.
    Kirovski, D., Malvar, H.S.: Spread-spectrum watermarking of audio signals. IEEE Trans. Signal Process. 51(4), 1020–1033 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kurth, F., Müller, M., Damm, D., Fremerey, C., Ribbrock, A., Clausen, M.: Syncplayer-an advanced system for multimodal music access. ISMIR 5, 381–388 (2005)Google Scholar
  23. 23.
    Kurth, F., Ribbrock, A., Clausen, M.: Identification of highly distorted audio material for querying large scale data bases. In: In Proceedings 112th AES Convention, p. 9 (2002)Google Scholar
  24. 24.
    Law-To, J., Buisson, O., Gouet-Brunet, V., Boujemaa, N.: Robust voting algorithm based on labels of behavior for video copy detection. In: Proceedings of the 14th ACM International Conference on Multimedia, October 23–27, 2006, pp. 835–844. Santa Barbara, CA, USA (2006)Google Scholar
  25. 25.
    Lin, S.D., Shie, S.-C., Guo, J.Y.: Improving the robustness of DCT-based image watermarking against JPEG compression. Comput. Stand. Interfaces 32(12), 54–60 (2010)Google Scholar
  26. 26.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2, pp. 1150–1157 (1999)Google Scholar
  27. 27.
    Meerwald, P., Uhl, A.: A survey of wavelet-domain watermarking algorithms. In: Proceedings of SPIE, Electronic Imaging, Security and Watermarking of Multimedia Contents III, pp. 505–516. SPIE (2001)Google Scholar
  28. 28.
    nan Li, Y.: Robust content fingerprinting algorithm based on sparse coding. IEEE Signal Process. Lett. 22(9), 1254–1258 (2015)Google Scholar
  29. 29.
    Oostveen, J., Kalker, T., Haitsma, J.: Feature extraction and a database strategy for video fingerprinting. In: Recent Advances in Visual Information Systems, 5th International Conference, VISUAL 2002, March 11–13, 2002, Proceedings, pp. 117–128. Hsin Chu, Taiwan (2002)Google Scholar
  30. 30.
    Ouali, C., Dumouchel, P., Gupta, V.: Fast audio fingerprinting system using GPU and a clustering-based technique. IEEE/ACM Trans. Audio, Speech, Lang. Process. 24(6), 1106–1118 (2016)CrossRefGoogle Scholar
  31. 31.
    Radhakrishnan, R., Bauer, C.: Content-based video signatures based on projections of difference images. In: IEEE 9th Workshop on, Multimedia Signal Processing, 2007. MMSP 2007, pp. 341–344, Oct 2007Google Scholar
  32. 32.
    Radhakrishnan, R., Bauer, C.: Video fingerprinting based on moment invariants capturing appearance and motion. In: Proceedings of the 2009 IEEE International Conference on Multimedia and Expo, ICME ’09, pp. 1532–1535. IEEE Press, Piscataway, NJ, USA (2009)Google Scholar
  33. 33.
    Ruanaidh, J.K.O., Pun, T.: Rotation, scale and translation invariant spread spectrum digital image watermarking. Signal Process. 66(3), 303–317 (1998)Google Scholar
  34. 34.
    Seo, J.S., Haitsma, J., Kalker, T., Yoo, C.D.: A robust image fingerprinting system using the Radon transform. Signal Process. Image Commun. 19(4), 325–339 (2004)Google Scholar
  35. 35.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379–423, 623–656, July, Oct 1948Google Scholar
  36. 36.
    Shivakumar, N.: Detecting digital copyright violations on the internet. PhD Thesis. Stanford University (1999)Google Scholar
  37. 37.
    Tahboub, K., Neeraj, J.G., Mary, L.C., Edward, J.D.: An HEVC compressed domain content-based video signature for copy detection and video retrieval (2014)Google Scholar
  38. 38.
    Wang, A.: An industrial strength audio search algorithm. In: International Conference on Music Information Retrieval (ISMIR) (2003)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vodafone GmbHDüsseldorfGermany

Personalised recommendations