MediaSync pp 593-627 | Cite as

Merge and Forward: A Self-Organized Inter-Destination Media Synchronization Scheme for Adaptive Media Streaming over HTTP

  • Benjamin Rainer
  • Stefan Petscharnig
  • Christian Timmerer
Chapter

Abstract

In this chapter, we present Merge and Forward, an IDMS scheme for adaptive HTTP streaming as a distributed control scheme and adopting the MPEG-DASH standard as representation format. We introduce so-called IDMS sessions and describe how an unstructured peer-to-peer overlay can be created using the session information using MPEG-DASH. We objectively assess the performance of Merge and Forward with respect to convergence time (time needed until all clients hold the same reference time stamp) and scalability. After the negotiation on a reference time stamp, the clients have to synchronize their multimedia playback to the agreed reference time stamp. In order to achieve this, we propose a new adaptive media playout approach minimizing the impact of playback synchronization on the QoE. The proposed adaptive media playout is assessed subjectively using crowd sourcing. We further propose a crowd sourcing methodology for conducting subjective quality assessments in the field of IDMS by utilizing GWAP. We validate the applicability of our methodology by investigating the lower asynchronism threshold for IDMS in scenarios like online quiz games.

Keywords

IDMS Distributed algorithm Distributed systems Crowd sourcing Multimedia streaming MPEG-DASH 

References

  1. 1.
    Geerts, D., Vaishnavi, I., Mekuria, R., van Deventer, O., Cesar, P.: Are we in Sync?: Synchronization requirements for watching online video together. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 311–314. ACM (2011)Google Scholar
  2. 2.
    Montagud, M., Boronat, F., Stokking, H., Brandenburg, R.: Inter-destination multimedia synchronization: schemes, use cases and standardization. Multimedia Syst. 18, 459–482 (2012)CrossRefGoogle Scholar
  3. 3.
    Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans. Commun. 39, 1482–1493 (1991)CrossRefGoogle Scholar
  4. 4.
    IEEE 1588 Precision Time Protocol on Wireless LAN Software and Hardware Prototypes (2005)Google Scholar
  5. 5.
    Ishibashi, Y., Tsuji, A., Tasaka, S.: A group synchronization mechanism for stored media in multicast communications. In: Proceedings of 16th Annual Joint Conference of the Computer and Communications Societies. Driving the Information Revolution (INFOCOM)., vol. 2, pp. 692–700. IEEE (1997).  https://doi.org/10.1109/INFCOM.1997.644522
  6. 6.
    Stokking, H., Van Deventer, M., Niamut, O., Walraven, F., Mekuria, R.: IPTV Inter-destination synchronization: a network-based approach. In: Proceedings of the 14th Intelligence in Next Generation Networks (ICIN), pp. 1–6. IEEE (2010)Google Scholar
  7. 7.
    Mauve, M., Vogel, J., Hilt, V., Effelsberg, W.: Local-lag and Timewarp: Providing Consistency for Replicated Continuous Applications (2002)Google Scholar
  8. 8.
    Boronat Seguí, F., Guerri Cebollada, J., Lloret Mauri, J.: An RTP/RTCP based approach for multimedia group and inter-stream synchronization. Multimedia Tools Appl. 40, 285–319 (2008)Google Scholar
  9. 9.
    Montagud, M.: Design, development and evaluation of an adaptive and standardized RTP/RTCP-based IDMS solution. In: Proceedings of the 21st International Conference on Multimedia, pp. 1071–1074. ACM (2013)Google Scholar
  10. 10.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RFC 3550: RTP: A transport protocol for real-time applications. Tech. Rep., IETF (2003). www.ietf.org/rfc/rfc3550.txt
  11. 11.
    Brandenburg, R., Stokking, H., Deventer, O., Boronat, F., Montagud, M., Gross, K.: RFC 7272: Inter-destination media synchronization (IDMS) using the RTP control protocol (RTCP). Tech. Rep., IETF (2014). www.ietf.org/rfc/rfc7272.txt
  12. 12.
    Hesselman, C., Abbadessa, D., Van Der Beek, W., Gorgen, D., Shepherd, K., Smit, S., Gulbahar, M., Vaishnavi, I., Zoric, J., Lowet, D., De Groote, R., O’Connell, J., Friedrich, O.: Sharing enriched multimedia experiences across heterogeneous network infrastructures. IEEE Commun. Mag. 48(6), 54–65 (2010)CrossRefGoogle Scholar
  13. 13.
    Montagud, M., Boronat, F., Stokking, H.: Design and simulation of a distributed control scheme for inter-destination media synchronization. In: Proceedings of 27th International Conference on Advanced Information Networking and Applications, pp. 937–944. IEEE (2013)Google Scholar
  14. 14.
    Ishibashi, Y., Tasaka, S.: A Distributed Control Scheme for Causality and Media Synchronization in Networked Multimedia Games. In: Proceedings of the 11th International Conference on Computer Communications and Networks, pp. 144–149. IEEE (2002).  https://doi.org/10.1145/963900.963904
  15. 15.
    Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the internet. IEEE MultiMedia 18(4), 62–67 (2011).  https://doi.org/10.1109/MMUL.2011.71
  16. 16.
    Boronat, F., Montagud, M., Vidal, V.: Master selection policies for inter-destination multimedia synchronization in distributed applications. In: 19th International Symposium on Modeling Analysis and Simulation of Computer and Telecommunication Systems, pp. 269–277. IEEE (2011).  https://doi.org/10.1109/MASCOTS.2011.43
  17. 17.
    Hossfeld, T., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P., Schatz, R.: Quantification of YouTube QoE via Crowdsourcing. In: International Symposium on Multimedia, pp. 494–499. IEEE (2011)Google Scholar
  18. 18.
    Montagud, M., Boronat, F.: On the use of adaptive media playout for inter-destination synchronization. IEEE Commun. Lett. 15(8), 863–865 (2011)Google Scholar
  19. 19.
    Yuang, M., T.Liang, S., Chen, Y., Shen, C.: Dynamic video playout smoothing method for multimedia applications. In: Proceedings of the International Conference on Converging Technologies for Tomorrow’s Applications, vol. 3, pp. 1365–1369. IEEE (1996).  https://doi.org/10.1109/ICC.1996.533632
  20. 20.
    Rainer, B., Timmerer, C.: Self-organized inter-destination multimedia synchronization for adaptive media streaming. In: Proceedings of the 22st ACM International Conference on Multimedia. ACM, New York, NY, USA (2014)Google Scholar
  21. 21.
    Network Working Group: RFC 5389 - Session Traversal Utilities for NAT (STUN). Tech. rep., IETF (2008) http://tools.ietf.org/html/rfc5389
  22. 22.
    RFC 5766–Traversal Using Relays around NAT (TURN). Technical Report, IETF (2010)Google Scholar
  23. 23.
    Kuramochi, K., Kawamura, T., Sugahara, K.: NAT traversal for pure P2P e-learning system. In: Proceedings of the 3rd International Conference on Internet and Web Applications and Services, pp. 358–363. IARIA (2008).  https://doi.org/10.1109/ICIW.2008.74
  24. 24.
    Christensen, K., Roginsky, A., Jimeno, M.: A new analysis of the false positive rate of a bloom filter. Informat. Process. Lett. Elsevier North-Holland 110(21), 944–949 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Erdos, P., Renyi, A.: On Random Graphs. Publicationes Mathematicae (Debrecen) 6, 290–297 (1959). http://www.renyi.hu/erdos/Erdos.html#1959-11
  27. 27.
    OMNET++ 4.3.1: http://www.omnetpp.org/ (Last accessed Dec 2013)
  28. 28.
    Rainer, B., Timmerer, C.: A quality of experience model for adaptive media playout. In: Sixth International Workshop on Quality of Multimedia Experience, pp. 177–182. IEEE (2014)Google Scholar
  29. 29.
  30. 30.
  31. 31.
    Verhelst, W., Roelands, M.: An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 554–557. IEEE (1993).  https://doi.org/10.1109/ICASSP.1993.319366
  32. 32.
    ITU-T Recommendation P.910: Subjective video quality assessment methods for multimedia applications. Tech. Rep., International Telecommunication Union, Geneva, Switzerland (2008)Google Scholar
  33. 33.
    Hirth, M., Hossfeld, T., Tran-Gia, P.: Anatomy of a Crowdsourcing Platform–Using the Example of Microworkers.com. In: Proceedings of the 5th Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 322–329. IEEE (2011)Google Scholar
  34. 34.
    inFAMOUS Second Son–Sukker Punch: http://infamous-second-son.com/
  35. 35.
  36. 36.
    Rainer, B., Waltl, M., Timmerer, C.: A web based subjective evaluation platform. In: Proceedings of the 5th International Workshop on Quality of Multimedia Experience, pp. 24–25. IEEE, Los Alamitos, CA, USA (2013). http://www.qomex2013.org
  37. 37.
    Hossfeld, T., Keimel, C., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., Tran-Gia, P.: Best practices for QoE crowdtesting: QoE assessment with crowdsourcing. IEEE Trans. Multimedia PP(99), 1–1 (2013).  https://doi.org/10.1109/TMM.2013.2291663
  38. 38.
    Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52(3/4), 591–611 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Benjamin Rainer
    • 1
  • Stefan Petscharnig
    • 2
  • Christian Timmerer
    • 2
  1. 1.Austrian Institute of Technology (AIT)SeibersdorfAustria
  2. 2.Institute of Information Technology KlagenfurtAustria

Personalised recommendations