MediaSync pp 319-356 | Cite as

Olfaction-Enhanced Multimedia Synchronization

  • Niall Murray
  • Gabriel-Miro Muntean
  • Yuansong Qiao
  • Brian Lee
Chapter

Abstract

This chapter introduces olfaction-enhanced multimedia synchronization and focuses on two key aspects: the specification of olfaction-enhanced multimedia, including the temporal relations between the media components; and secondly, the implementation of synchronized delivery of olfaction-enhanced multimedia. The relevance of this topic is supported by the fact that recently, multimedia researchers have begun to work with several new media components such as olfaction, haptic and gustation. The characteristics of these multisensory media differ significantly from traditional media. Multisensory media components cannot be classified as being continuous or discrete. Olfaction, the sense of smell, in particular, raises numerous research challenges. Synchronization, perceptual variability, sensor and display development are just some of the avenues among many others that require efforts from the research community. In terms of synchronization, implementing synchronized delivery as part of transmission across constrained networks is not the key research challenge (although adaptive mulsemedia delivery can play an important role here). Rather the principal problem, from a synchronization perspective, is understanding the experiential attributes of olfaction with respect to the temporal relations with other media components and the effect of these on the user’s perceived Quality of Experience (QoE). This task is non-trivial. There are many facets unique to olfaction, which need to be understood in order to design and execute even the most basic of evaluations. In this chapter, we present and discuss the results of a subjective study which considered the above-mentioned “specification” and “implementation” challenges. In particular, we focus on analysing the user’s ability to detect synchronization error and the resultant annoyance levels of synchronization error.

Keywords

Olfaction Multimedia Synchronization Quality of experience 

Notes

Definitions

Olfaction-enhanced multimedia

The presentation of olfactory stimuli in addition to traditional media content (audio-visual).

Quality of Experience

the degree of delight or annoyance of a person whose experiencing involves an application, service, or system. It results from the person’s evaluation of the fulfillment of his or her expectations and needs with respect to the utility and/or enjoyment in the light of the person’s context, personality and current state.

Skew

skew reflects the difference in presentation times between the related olfactory media component and the associated video media components (i.e. if both synchronized, there is a 0s skew). The skew levels are not the results of network transmission effects but are conceptual.

Mulsemedia

multiple sensorial media applications are those that engage three (or more) of our senses.

References

  1. 1.
    Blakowski, G., Steinmetz, R.: A media synchronization survey: reference model, specification, and case studies. In: IEEE J. Sel. Areas Commun. 14(1), 5–35 (1996).  https://doi.org/10.1109/49.481691
  2. 2.
    Spencer, B.S.: Incorporating the sense of smell into patient and haptic surgical simulators. IEEE Trans. Inf Technol. Biomed. 10(1), 168–173 (2006)CrossRefGoogle Scholar
  3. 3.
    Murray, N., Lee, B., Qiao, Y., Muntean, G.-M.: The impact of scent type on olfaction-enhanced multimedia quality of experience. IEEE Trans. Systems, Man, and Cybernetic: System. 47(9), 2503–2515 (2017). https://doi.org/10.1109/tsmc.2016.2531654
  4. 4.
    Brewster, S.A., McGoookin, D.K. Miller, C.A.: Olfoto: designing a smell-based interaction. In: ACM SIGCHI Conference on Human Factors in Computing Systems (2006)Google Scholar
  5. 5.
    Timmerer, C., Waltl, M., Rainer, B., Murray, N.: Sensory experience: quality of experience beyond audio-visual. In: Möller, S., Raake, A. (eds.) Quality of Experience: Advanced Concepts, Applications and Methods, pp. 351–365 (2014). Springer, Heidelberg, Germany.  https://doi.org/10.1007/978-3-319-02681-7_24
  6. 6.
    Ghinea, G., Gulliver, S.R., Andres, F. (eds.) Multiple Sensorial Media Advances and Applications: New Developments in mulsemedia. IGI Global (2011).  https://doi.org/10.4018/978-1-60960-821-7
  7. 7.
    Ghinea, G., Timmerer, C., Lin, W., Gulliver, S.R.: Mulsemedia: state of the art, perspectives, and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 11(1s), Article 17, 23 pp (2014).  https://doi.org/10.1145/2617994 http://doi.acm.org/10.1145/2617994
  8. 8.
    Washburn, D.A.: Olfactory use in virtual environment training. Model. Simul. 2(3), 19–25 (2003)Google Scholar
  9. 9.
    Gerardi, M., Rothbaum, BO., Ressler, K., Keekin, M., Rizzo, A.: Virtual reality exposure using a virtual iraq: case report. J. Trauma. Stress 21(2) (2008)Google Scholar
  10. 10.
    Shams, L., Seitz, A.R.: Benefits of multisensory learning. Trends Cogn. Sci. 12(11), 411–417 (2008)Google Scholar
  11. 11.
    Obrist, M., Tuch, A.N., Hornbaek, K.: Opportunities for odour: experiences with smell and implications for technology. In: Proceedings of SIGCHI Conference on Human Factors in Computing Systems, pp 2843–2852 (2014).  https://doi.org/10.1145/2556288.2557008
  12. 12.
    Hirota, K., Ebisawa, S., Amemiya, T., Ikei, Y.: A theater for viewing and editing multi-sensory content. In: IEEE International Symposium on VR Innovation (ISVRI), pp 239–244 (2011).  https://doi.org/10.1109/isvri.2011.5759643
  13. 13.
    Ghinea, G., Ademoye, O.A.: Olfaction-enhanced multimedia: bad for information recall? In: International Conference on Multimedia and Expo (ICME), pp. 970–973 (2009).  https://doi.org/10.1109/icme.2009.5202658
  14. 14.
    Ghinea, G., Ademoye, O.A.: Olfaction-enhanced multimedia: perspectives and challenges. Multimed. Tools Appl. 55(3), 601–626 (2011)Google Scholar
  15. 15.
    Murray, N., Qiao, Y., Lee, B., Karunakar, A.K., Muntean, G.-M.: Olfaction enhanced multimedia: a survey of application domains, displays and research challenges. ACM Comput. Surv. 48(4), Article No. 56 (2016).  https://doi.org/10.1145/2816454
  16. 16.
    Murray, N., Ademoye, O.A., Ghinea, G., Muntean, G.: A tutorial for olfaction-based multisensory media application design and evaluation. Accepted for publication in ACM Computing Surveys 2017Google Scholar
  17. 17.
    http://www.cj4dx.com/. Accessed 01 July 2017
  18. 18.
    Ramic, B., Hasic, J., Rizvic, S., Chalmers, A.: Selective rendering in a multimodal environment: scent and graphics. In: Spring Conference on Computer Graphics, pp. 147–151 (2006). ACM SIGGraph.  https://doi.org/10.1145/2614348.2614369
  19. 19.
    Brkic, B.R., Chalmers, A.: Virtual smell: authentic smell diffusion in virtual environments. In: Proceedings of the 7th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, pp. 45–52, (2010).  https://doi.org/10.1145/1811158.1811166
  20. 20.
    Brkic, B.R., Chalmers, A., Sadzak, A., Debattista, K., Sultanic, S.: Exploring multiple modalities for selective rendering of virtual Environments. In: Spring Conference on Computer Graphics, pp. 91–98 (2013).  https://doi.org/10.1145/2508244.2508256
  21. 21.
    Miyaura, M., Narumi, T., Nishimura, K., Tanikawa, T., Hirose, M.: Olfactory feedback system to improve the concentration level based on biological information. In: IEEE Virtual Reality Conference, pp. 139–142 (2011).  https://doi.org/10.1109/vr.2011.5759452
  22. 22.
    Covarrubias, M., Bordegoni, M., Rosini, M., Guanziroli, E., Cugini, U., Molteni, F.: VR system for rehabilitation based on hand gestural and olfactory interaction. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, pp. 117–120 (2015).  https://doi.org/10.1145/2821592.2821619
  23. 23.
    van Hoven, B.: Multi-sensory tourism in the great bear rainforest. J. Assoc. Icel. Geogr. 25, 31–49 (2011)Google Scholar
  24. 24.
    Lai, M.K.: Universal scent BlackBox—engaging visitors communication through creating olfactory experience at Art Museum. In: Proceedings of the 33rd Annual International Conference on the Design of Communication Article No. 27 (2015).  https://doi.org/10.1145/2775441.2775483
  25. 25.
    Hiroshi, A., Liu, J., Kim, D.W.: Multi-sensory interaction technology and its system application. http://www.nict.go.jp/publication/shuppan/kihou-journal/journal-vol57no1_2/journal-vol57no1-2_0503.pdf
  26. 26.
    Fernstrom, M., Bannon, L.: Enabling technology for museum visitors: issues and experiences. In: Proceedings of the International Conference on Museums and the Web 1997, Los AngelesGoogle Scholar
  27. 27.
    Tuan, Y.F., Hoelscher, S.: Space and Place: The Perspective of Experience. University of Minnesota Press (2001). ISBN-10:0816638772Google Scholar
  28. 28.
    Porteous, J.D.: Smellscape. Progress Phys. Geogr. 9(3), 356–378 (1985).  https://doi.org/10.1177/030913338500900303
  29. 29.
    Hall, T., Bannon, L.: Designing ubiquitous computing to enhance children’s interaction in museums. In: Proceedings of the 2005 conference on Interaction design and children, pp. 62–69 (2005).  https://doi.org/10.1145/1109540.1109549
  30. 30.
    Cheong, R.: The virtual threat to travel and tourism. Tour. Manag. 16(6), 417–422 (1995).  https://doi.org/10.1016/0261-5177(95)00049-TCrossRefGoogle Scholar
  31. 31.
    Dann, G., Jacobsen, J.K.S.: Leading the tourist by the nose. The tourist as a metaphor for the social world, pp 209–235 (2009).  https://doi.org/10.1079/9780851996066.0209
  32. 32.
    Kaye, N.: Symbolic olfactory display, M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001Google Scholar
  33. 33.
    Gardner, H.: Frames of Mind: The Theory of Multiple Intelligences (1983). Basic Book Inc., New YorkGoogle Scholar
  34. 34.
    Shams, L., Seitz, A.R.: Benefits of multisensory learning. Trends Cogn. Sci. 12(11), 411–417 (2008).  https://doi.org/10.1016/j.tics.2008.07.006
  35. 35.
    Haverkamp, M.: Synesthetic approach for evaluation of the cross-sensory quality of multi-media applications. In: International Workshop on Quality of Multimedia Experience (QoMEX), pp 136–141 (2010).  https://doi.org/10.1109/QOMEX.2010.5516107
  36. 36.
    Hyacinthe, B.P.: Apparatus and methods for production of printed aromatic and gustative information. In: Proceedings of 6th ACM/IEEE-CS Joint Conference on Digital Libraries, pp 365 (2006).  https://doi.org/10.1145/1141753.1141860
  37. 37.
    Tortell, R., Luigi, D.P., Dozois, A., Bouchard, S., Morie, J.F., Ilan, D.: The effects of scent and game play experience on memory of a virtual environment. IEEE Virtual Real. 11(1), 61–68 (2007).  https://doi.org/10.1007/s10055-006-0056-0CrossRefGoogle Scholar
  38. 38.
    Herz, R.S.: Influences of odours on mood and affective cognition. In: Olfaction, Taste, and Cognition, pp. 160–177 (2002).  https://doi.org/10.1017/cbo9780511546389.016
  39. 39.
    Barros, P.G.-D., Lindeman, R.: Performance effects of multi-sensory displays in virtual environments. In: Symposium on Spatial User Interaction (2013).  https://doi.org/10.1145/2491367.2491371
  40. 40.
    Mikropoulos, T.A., Natsis, A.: Educational virtual environments: a ten-year review of empirical research (1999–2009). Comput. Educ. 56(3), 769–780 (2011).  https://doi.org/10.1016/j.compedu.2010.020
  41. 41.
    Tijou, A., Richard, E., Richard, P.: Using olfactive virtual environments for learning organic molecules. In: Technologies for E-Learning and Digital Entertainment, vol. 3942, pp. 1223–1233 (2006). Springer.  https://doi.org/10.1007/11736639_152
  42. 42.
    Richard, E., Tijou, A., Richard, P., Ferrier., J.-L.: Multi-modal virtual environments for education with haptic and olfactory feedback. J. Virtual Real. 10(3), 207–225 (2006).  https://doi.org/10.1007/s10055-006-0040-8
  43. 43.
    Richard, E., Tijou, A., Richard, P.: Multi-modal virtual environments for education: from illusion to immersion. In: Technologies for E-Learning and Digital Entertainment, vol. 3942, pp. 1274–1279 (2006). Springer.  https://doi.org/10.1007/11736639_158
  44. 44.
    Dinh, H.O., Walker, N., Song, C., Kobayashi, A., Hodges, L.F.: Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. In: IEEE Virtual Reality, pp. 222–228 (1999).  https://doi.org/10.1109/vr.1999.756955
  45. 45.
    Hughes, C.E., Stapleton, C.B., Hughes, D.E., Smith, E.M.: Mixed reality in education, entertainment and training. IEEE Comput. Graph. Appl. 25(6), 24–30 (2005).  https://doi.org/10.1109/mcg.2005.139
  46. 46.
    Ludvigson, W., Rottman, T.R.: Effects of ambient odours of lavender and cloves on cognition, memory, affect and mood. Chem. Senses 14(4), 525–536 (1989).  https://doi.org/10.1093/chemse/14.4.525CrossRefGoogle Scholar
  47. 47.
    Mustonen, S., Rantanen, R., Tuorila, H.: Effect of sensory education on school children’s food perception: a 2-year follow-up study. Food Qual. Prefer. 20(3), 230–240 (2009).  https://doi.org/10.1016/j.foodqual.2008.10.003CrossRefGoogle Scholar
  48. 48.
    Ron, C.-W.K., Cheng, S.H., Ip, H.H.-S., Joseph, S.-L.K.: Design of affectively evocative smart ambient media for learning. Comput. Educ. 56(1), 101–111 (2011).  https://doi.org/10.1016/j.compedu.2010.08.015
  49. 49.
    Childers, C., Coleman, M.: The role olfactory technology in serious gaming, mental training, and therapy. http://sensoryacumen.com. Accessed 11 June 2013
  50. 50.
    Cater, J.P.: Smell/taste: odours in virtual reality. In: IEEE International Conference Systems, Man and Cybernetics, Human Information and Technology, vol. 2 (1994).  https://doi.org/10.1109/icsmc.1994.400108
  51. 51.
    Muller, D., Bruns, F.W., Erbe, H.H., Robben, B., Yoo, Y.H.: Mixed reality learning spaces for collaborative experimentation: a challenge for engineering education and training. Int. J. Online Eng. 3(4) (2007)Google Scholar
  52. 52.
    Garcia-Ruiz, M.A., Edwards, A., Aquino-Santos, R., Alvarez-Cardenas, O., Mayoral-Baldivia, M.G.: Integrating the sense of smell in virtual reality for second language learning. In: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, pp. 2647–2652 (2008)Google Scholar
  53. 53.
    Fletcher, J.D.: Education and training technology in the military. Science 323(5910), 72–75 (2009).  https://doi.org/10.1126/science.1167778CrossRefGoogle Scholar
  54. 54.
    Borromeo, S., Hernandez-Tamames, J.A., Luna, G., Machado, F., Malpica, N., Toledano, A.: Objective assessment of olfactory function using functional magnetic resonance imaging (fMRI). IEEE Trans. Instrum. Meas. 59(10), 2602–2608 (2010).  https://doi.org/10.1016/j.otoeng.2012.07.005CrossRefGoogle Scholar
  55. 55.
    Haehner, A., Hummel, T., Reichmann, H.: Olfactory dysfunction as a diagnostic marker for Parkinson’s disease. Expert Rev. Neurother. 9(12), 1773–1779 (2009).  https://doi.org/10.1586/ern.09.115
  56. 56.
    Bohner, N.I., Mueller, M.L., Kotagal, V., Keoppe, R.A., Kilbourn, M.A., Albin, R.L., Frey, K.A.: Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain 133(6), 1747–1754 (2010).  https://doi.org/10.1093/brain/awq079
  57. 57.
    Pereira, F., Burnett, I.: Universal multimedia experiences for tomorrow. IEEE Signal Process. Mag. 20(2), 63–73 (2003).  https://doi.org/10.1109/msp.2003.1184340
  58. 58.
    Redd, W., Manne, S.: Using aroma to reduce distress during magnetic resonance imaging. In: A. Gilbert (ed.) Compendium of Olfactory Research 1982–1994, Dubuque, pp. 47–52. Kendall/Hunt Publishing Co., Iowa (1995)Google Scholar
  59. 59.
    Depledge, M.H., Stone, R.J., Bird, W.J.: Can natural and virtual environments be used to promote improved human health and wellbeing? Environ. Sci. Technol. 45(11), 4660–4665 (2011).  https://doi.org/10.1021/es103907m
  60. 60.
    Baus, O., Bouchard, S.: The sense of olfaction: its characteristics and its possible applications in virtual environments. J. CyberTherapy Rehabil. 3(1), 31–50 (2010)Google Scholar
  61. 61.
    Spenser, B.S.: Incorporating the sense of smell into patient and haptic surgical simulators. IEEE Trans. Inf. Technol. Biomed. 10(1) (2006).  https://doi.org/10.1109/titb.2005.856851
  62. 62.
    Gerardi, M., Rothbaum, B.O., Ressler, K., Heekin, M., Rizzo, A.: Virtual reality exposure therapy using a virtual Iraq: case report. J. Trauma. Stress 21(2), 209–213 (2008).  https://doi.org/10.1002/jts.20331
  63. 63.
    Rizzo, A., Newman, B., Parsons, T., Difede, J., Reger, G., Holloway, K., Gahm, G., McLay, R., Johnston, S., Rothbaum, B., Graap, K., Spitalnick, J., Bordnick, P.: Development and clinical results from the virtual Iraq exposure therapy application for PTSD. In: Virtual Rehabilitation International Conference, pp. 8–15 (2009)Google Scholar
  64. 64.
    Rizzo, A., Graap, K., Mclay, R.N., Perlman, K., Rothbaum, B.O., Reger, G., Parsons, T., Difede, J., Pair, J.: Virtual Iraq: initial case reports from a VR exposure therapy application for combat-related post traumatic stress disorder. Stud. Health Technol. Inform. 132, 420–425 (2008)Google Scholar
  65. 65.
    Brewin, B.: Combat trauma theatre. http://www.govhealthit.com/news/combat-trauma-theater-3. Accessed 11 June 13
  66. 66.
    Pair, J., Allen, B., Dauticourt, M., Treskunov, A., Liewer, M., Graap, K., Reger, G.: A virtual reality exposure therapy application for Iraq war post traumatic stress disorder. In: IEEE Virtual Reality Conference, pp. 67–72 (2006).  https://doi.org/10.1109/vr.2006.23
  67. 67.
    Rizzo, A., Parsons, TD., Lange, B., Kenny, P.,. Buckwalter, JG., Rothbaum, B., Difede, J., Frazier, J., Newman, B., Williams, J., Reger, G.: Virtual reality goes to war: a brief review of the future of military behavioral healthcare. J. Clin. Psychol. Med. Setting 18(2), 176–187 (2011).  https://doi.org/10.1007/s10880-011-9247-2
  68. 68.
    Yeh, S.-C., Newman, B., Liewer, M., Pair, J.: A virtual Iraq system for the treatment of combat-related post traumatic stress disorder. In: IEEE Virtual Reality Conference, pp 163–170 (2009).  https://doi.org/10.1109/vr.2009.4811017
  69. 69.
    Richard, E., Billaudeau, V., Richard, P., Gaudin, G.: Augmented reality for rehabilitation of cognitive disabled children: a preliminary study. In: IEEE International Conference on Virtual Rehabilitation, pp. 102–108 (2007).  https://doi.org/10.1109/icvr.2007.4362148
  70. 70.
    Borromeo, S., Hernandez-Tamames, J.A., Luna, G., Machado, F., Malpica, N., Toledano, A.: Objective assessment of olfactory function using functional magnetic resonance imaging (fMRI). IEEE Trans. Instrum. Measur. 59(10), 2602–2608 (2010)Google Scholar
  71. 71.
    Warnock, D.: A subjective evaluation of multimodal notifications. In: 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp 461–468 (2011).  https://doi.org/10.4108/icst.pervasivehealth.2011.246001
  72. 72.
    ISO/IEC FDIS 23005-1 Information Technology—Media Context and Control—Part 1: Architecture, ISO Publication (2010)Google Scholar
  73. 73.
    ISO/IEC FDIS 23005-2 Information Technology—Media Context and Control—Part 2: Control Information, ISO Publication (2010)Google Scholar
  74. 74.
    ISO/IEC FDIS 23005-3 Information Technology—Media Context and Control—Part 3: Sensory Information, ISO Publication (2010)Google Scholar
  75. 75.
    ISO/IEC FDIS 23005-4 Information Technology—Media Context and Control—Part 4: Virtual World Object Characteristics, ISO Publication (2010)Google Scholar
  76. 76.
    ISO/IEC FDIS 23005-5 Information Technology—Media Context and Control—Part 5: Data formats for Interaction Devices, ISO Publication (2010)Google Scholar
  77. 77.
    ISO/IEC FDIS 23005-6 Information Technology—Media Context and Control—Part 6: Common Types and Tools, ISO Publication (2010)Google Scholar
  78. 78.
    ISO/IEC FDIS 23005-7 Information Technology—Media Context and Control—Part 7: Reference Software and Conformance, ISO Publication (2010)Google Scholar
  79. 79.
    Choi, B.S., Joo, S.H., Lee, H.Y.: Sensory effect metadata for SMMD media service. In: Proceedings of the Fourth International Conference on Internet and Web Applications and Services, pp. 649–654 (2009).  https://doi.org/10.1109/iciw.2009.104
  80. 80.
    Pyo, S., Joo, S.H., Choi, B.S., Kim, M.: A metadata schema design on representation of sensory effect information for sensible media and its service framework using UPnP. In: Proceedings of the 10th International Conference on Advanced Communication Technology (ICACT’08) (2008).  https://doi.org/10.1109/icact.2008.4493965
  81. 81.
    Yoon, K., Choi, B.S., Lee, E.S., Lim, T.B.: 4-D broadcasting with MPEG-V. In: IEEE International Workshop on Multimedia Signal Processing (MMSP’10), pp. 257–262 (2010).  https://doi.org/10.1109/mmsp.2010.5662029
  82. 82.
    Yun, J., Jang, J., Moon, K.: Development of the real-sense media broadcasting service system based on the SMMD. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 435–436 (2011).  https://doi.org/10.1109/icce.2011.5722669
  83. 83.
    Yun, J., Jang, J., Park, K., Han, D.: Real-sense media representation technology using multiple devices synchronization. In: Software Technologies for Embedded and Ubiquitous Systems, vol. 5860, pp. 343–353 (2009).  https://doi.org/10.1007/978-3-642-10265-3_31
  84. 84.
    Yuan, Z., Chen, S., Ghinea, G., Muntean, G.M.: Beyond multimedia adaptation: quality of experience-aware multi-sensorial media delivery. IEEE Trans. Multimed. 17(1), 104–117 (2015).  https://doi.org/10.1109/tmm.2014.2371240
  85. 85.
    Muntean, G.-M., Perry, P., Murphy, L.: A new adaptive multimedia streaming system for All-IP multi-service networks. IEEE Trans. Broadcast. 50(1), 1–10 (2004).  https://doi.org/10.1109/tbc.2004.824745
  86. 86.
    Yuan, Z., Venkataraman, H., Muntean, G.-M.: MBE: model-based available bandwidth estimation for IEEE 802.11 data communications. IEEE Trans. Veh. Technol 61(5), 2158–2171 (2012).  https://doi.org/10.1109/tvt.2012.2190760
  87. 87.
    Murray, N., Qiao, Y., Lee, B., Karunakar, A.K., Muntean, G.-M.: Subjective evaluation of olfactory and visual media synchronization. In: Proceedings of ACM Multimedia Systems conference, Feb 26–Mar 1, Oslo, Norway, pp. 162–171 (2013).  https://doi.org/10.1145/2483977.2483999
  88. 88.
    Kovács, P.T., Murray, N., Rozinaj, G., Sulema, Y., Rybárová, R.: Application of immersive technologies for education: state of the art. In: 9th International Conference on Interactive Mobile Communication Technologies and Learning, IMCL2015, Special Session on Immersive Technologies for Effective Learning (2015).  https://doi.org/10.1109/imctl.2015.7359604
  89. 89.
    Murray, N., Qiao, Y., Lee, B., Karunakar, A.K., Muntean, G.-M.: Age and gender influence on perceived olfactory and visual media synchronization. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 15–19, San Jose, California, USA (2013).  https://doi.org/10.1109/icme.2013.6607467
  90. 90.
    Murray, N., Qiao, Y., Lee, B., Muntean, G.M.: User-profile-based perceived olfactory and visual media synchronization. In: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 10(1s), article 11 (2014).  https://doi.org/10.1145/2540994
  91. 91.
    Yuan, Z., Chen, S., Ghinea, G., Muntean, G.M.: Beyond multimedia adaptation: quality of experience-aware multi-sensorial media delivery. IEEE Trans. Multimed. 17(1), 104–117 (2015).  https://doi.org/10.1109/tmm.2014.2371240
  92. 92.
    Ademoye, O.A., Murray, N., Muntean, G.-M., Ghinea, G.: Audio masking effect on inter-component skews in olfaction-enhanced multimedia presentations. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 12(4), article 51 (2016),  https://doi.org/10.1145/2957753
  93. 93.
    Murray, N., Ademoye, O.A., Ghinea, G., Qiao, Y., Muntean, G.M., Lee, B.: Olfactory-enhanced multimedia video clips datasets. Ninth International Conference on Quality of Multimedia Experience (QoMEX), 2017.  https://doi:10.1109/QoMEX.2017.7965653
  94. 94.
    Ohtsu, K., Sato, J., Bannai, Y., Okada, K.: Scent presentation technique of pulse ejection synchronized with breathing. In: Ninth Annual International Symposium on Applications and the Internet, pp 125–128 (2009).  https://doi.org/10.1109/saint.2009.28
  95. 95.
    Noguchi, D., Sugimoto, S., Bannai, Y., Okada, K.: Time characteristics of olfaction in a single breath. In: ACM CHI Conference on Human Factors in Computing Systems (CHI2011), pp. 83–92 (2011),  https://doi.org/10.1145/1978942.1978956
  96. 96.
    Murray, N., Lee, B., Qiao, Y., Muntean, G.M.: Multiple-scent enhanced multimedia synchronization. In: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM), Special Issue on MulseMedia 11(1s), article no. 12 (2014).  https://doi.org/10.1145/2637293
  97. 97.
    Steinmetz, R.: Human perception of jitter and media synchronization. IEEE J. Sel. Areas Commun. 14(1), 61–72 (1996).  https://doi.org/10.1109/49.481694
  98. 98.
  99. 99.
    ISO 5496:2006—Sensory analysis—Methodology—Initiation and training of assessors in the detection and recognition of odoursGoogle Scholar
  100. 100.
    Nakamoto, T., Otaguro, S., Kinoshita, M., Nagahama, M., Ohinishi K., Ishida T.: Cooking up an interactive olfactory game display. IEEE Comput. Graph. Appl. 28(1), 75–78 (2008).  https://doi.org/10.1109/MCG.2008.3
  101. 101.
    ISO/IEC 8589 Sensory analysis—General guidance for the design of test roomsGoogle Scholar
  102. 102.
    Murray, N.: Questionnaire_TOMCCAP_Special_Issue_2013. www.niallmurray.info/Research/appendix
  103. 103.
    Ghinea, G., Ademoye, O.A.: Perceived synchronization of olfactory multimedia. In: IEEE Trans. Syst. Man Cybern.—Part A: Syst. Hum. 40(4), 657–663 (2010).  https://doi.org/10.1109/tsmca.2010.2041224
  104. 104.
    Keighrey, N., Flynn, R., Murray, S., Brennan, S., and Murray, N.: Comparing User QoE via Physiological and Interaction Measurements of Immersive AR and VR Speech and Language Therapy Applications. In: Proceeding Thematic Workshops ’17 Proceedings of the on Thematic Workshops of ACM Multimedia 2017 Pages 485–492,  https://doi.10.1145/3126686.3126747
  105. 105.
    Keighrey, C., Flynn, R., Murray, S., Murray, N.: A QoE evaluation of immersive augmented and virtual reality speech & language assessment applications. 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), 2017  https://doi:10.1109/QoMEX.2017.7965656
  106. 106.
    Engelke, U., Darcy, D.P., Mulliken, G.H., Bosse, S., Martini, M.G., Arndt, S., Antons, J-.N., Chan, K.Y., Ramzan, N., Brunnstrom, K.: Psychophysiology-based QoE assessment: a survey. IEEE J. Sel. Top. Sign. Proces. 11(1), 6–21Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Niall Murray
    • 1
  • Gabriel-Miro Muntean
    • 1
    • 2
  • Yuansong Qiao
    • 1
  • Brian Lee
    • 1
  1. 1.Department of Electronics & InformaticsAthlone Institute of TechnologyWestmeathIreland
  2. 2.Department of Electronic EngineeringDublin City UniversityDublinIreland

Personalised recommendations