Skip to main content

Translation Regulation: The Archaea-Eukaryal Connection

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC,volume 32)

Abstract

Translation, as an essential cellular process, is very well conserved through evolution. Nonetheless, the translational apparatus, namely the ribosomes and the accessory protein factors that assist all the steps of translation, have incurred a certain divergence in the three domains of cellular descent, the Bacteria, the Archaea and the Eukarya. The strongest evolutionary divergence is seen at the level of the initiation step, during which the ribosomes identify the start codon on the mRNA and set the correct reading frame for decoding. Initiation is a crucial event that sets the general rate of translation and is the target of most mechanisms of translational regulation.

While the Bacteria have a very streamlined translational apparatus, especially as regards the translation initiation factors, the other prokaryotic domain, the Archaea, displays an unexpected degree of complexity. Moreover, the components of the archaeal translational apparatus are evolutionarily closer to those of the Eukarya, and the Archaea share with the Eukarya certain translation factors that are not found in Bacteria. This chapter reviews the similarities and the differences of the several steps of translation in the three domains of life, with special emphasis on the still poorly understood connection between Archaea and Eukarya.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, Tampé R (2011) Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci U S A 108:3228–3233

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartig D, Schumann H, Klink F (1990) The unique posttranslational modification leading to deoxyhypusine or hypusine is a general feature of the archaebacterial kingdom. Syst Appl Microbiol 13:112–116

    CrossRef  CAS  Google Scholar 

  • Bartig D, Lemkemeier K, Frank J, Lottspeich F, Klink F (1992) The archaebacterial hypusine-containing protein. Eur J Biochem 204:751–758

    CrossRef  CAS  PubMed  Google Scholar 

  • Benelli D, Marzi S, Mancone C, Alonzi T, la Teana A, Londei P (2009) Function and ribosomal localization of aIF6, a translational regulator shared by archaea and eukarya. Nucleic Acids Res 37:256–267

    CrossRef  CAS  PubMed  Google Scholar 

  • Benelli D, La Teana A, Londei P (2016) Evolution of translational initiation: from Archaea to Eukarya. In: Hernández G, Jagus R (eds) Evolution of the protein synthesis machinery and its regulation. Springer International Publishing, Switzerland, pp 61–80

    CrossRef  Google Scholar 

  • Benne R, Brown-Luedi ML, Hershey JW (1978) Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J Biol Chem 253:3070–3077

    CAS  PubMed  Google Scholar 

  • Caraglia M, Marra M, Giuberti G, D’Alessandro AM, Baldi A, Tassone P, Venuta S, Tagliaferri P, Abbruzzese A (2003) The eukaryotic initiation factor 5A is involved in the regulation of proliferation and apoptosis induced by interferon-alpha and EGF in human cancer cells. J Biochem 133:757–765

    CrossRef  CAS  PubMed  Google Scholar 

  • Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC, Biffo S (2003) Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426:579–584

    CrossRef  CAS  PubMed  Google Scholar 

  • Chatterjee I, Gross SR, Kinzy TG, Chen KY (2006) Rapid depletion of mutant eukaryotic initiation factor 5A at restrictive temperature reveals connections to actin cytoskeleton and cell cycle progression. Mol Gen Genomics 275:264–276

    CrossRef  CAS  Google Scholar 

  • Cheung YN, Maag D, Mitchell SF, Fekete CA, Algire MA, Takacs JE, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG (2007) Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev 21:1217–1230

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper HL, Park MH, Folk JE, Safer B, Braverman R (1983) Identification of the hypusine-containing protein hy+ as translation initiation factor eIF-4D. Proc Natl Acad Sci U S A 80:1854–1857

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • De Marco N, Iannone L, Carotenuto R, Biffo S, Vitale A, Campanella C (2010) p27(BBP)/eIF6 acts as an anti-apoptotic factor upstream of Bcl-2 during Xenopus laevis development. Cell Death Differ 17:360–372

    CrossRef  PubMed  Google Scholar 

  • De Marco N, Tussellino M, Vitale A, Campanella C (2011) Eukaryotic initiation factor 6 (eif6) overexpression affects eye development in Xenopus laevis. Differentiation 82(2):108–115

    CrossRef  PubMed  Google Scholar 

  • Dever TE, Gutierrez E, Shin BS (2014) The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol 49:413–425

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339:85–88

    CrossRef  CAS  PubMed  Google Scholar 

  • Gäbel K, Schmitt J, Schulz S, Näther DJ, Soppa J (2013) A comprehensive analysis of the importance of translation initiation factors for Haloferax volcanii applying deletion and conditional depletion mutants. PLoS One 8:e77188

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gandin V, Miluzio A, Barbieri AM, Beugnet A, Kiyokawa H, Marchisio PC, Biffo S (2008) Eukaryotic initiation factor 6 is rate-limiting in translation, growth and transformation. Nature 455:684–688

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Ganoza MC (1975) Identification of a soluble protein that stimulates peptide bond synthesis. Proc Natl Acad Sci U S A 72:4257–4260

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosslau A, Jao DL, Butler R, Liu AY, Chen KY (2009) Thermal killing of human colon cancer cells is associated with the loss of eukaryotic initiation factor 5A. J Cell Physiol 219:485–493

    CrossRef  CAS  PubMed  Google Scholar 

  • Greber BJ, Boehringer D, Godinic-Mikulcic V, Crnkovic A, Ibba M, Weygand-Durasevic I, Ban N (2012) Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J Mol Biol 418:145–160

    CrossRef  CAS  PubMed  Google Scholar 

  • Grill S, Gualerzi CO, Londei P, Bläsi U (2000) Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19:4101–4110

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Groft CM, Beckmann R, Sali A, Burley SK (2000) Crystal structures of ribosome anti-association factor IF6. Nat Struct Biol 7:1156–1164

    CrossRef  CAS  PubMed  Google Scholar 

  • Gualerzi CO, Pon CL (2015) Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 72:4341–4367

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez E, Shin BS, Woolstenhulme CJ, Kim JR, Saini P, Buskirk AR, Dever TE (2013) eIF5A promotes translation of polyproline motifs. Mol Cell 51:35–45

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanauske-Abel HM, Park MH, Hanauske AR, Popowicz AM, Lalande M, Folk JE (1994) Inhibition of the G1-S transition of the cell cycle by inhibitors of deoxyhypusine hydroxylation. Biochim Biophys Acta 1221:115–124

    CrossRef  CAS  PubMed  Google Scholar 

  • Hasenöhrl D, Benelli D, Barbazza A, Londei P, Bläsi U (2006) Sulfolobus solfataricus translation initiation factor 1 stimulates translation initiation complex formation. RNA 12:674–682

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hasenöhrl D, Lombo T, Kaberdin V, Londei P, Bläsi U (2008) Translation initiation factor a/eIF2(-gamma) counteracts 5’ to 3’ mRNA decay in the archaeon Sulfolobus solfataricus. Proc Natl Acad Sci U S A 105:2146–2150

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hasenöhrl D, Fabbretti A, Londei P, Gualerzi CO, Bläsi U (2009) Translation initiation complex formation in the crenarchaeon Sulfolobus solfataricus. RNA 15:2288–2298

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hersch SJ, Wang M, Zou SB, Moon K, Foster LJ, Ibba M, Navarre WW (2013) Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. mBio 4:e00180–e00113

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch AG (2014) The scanning mechanism of eukaryotic translation initiation. Annu Rev Biochem 83:779–812

    CrossRef  CAS  PubMed  Google Scholar 

  • Hinnebusch AG, Lorsch JR (2012) The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol 4(10)

    Google Scholar 

  • Hoque M, Hanauske-Abel HM, Palumbo P, Saxena D, D’Alliessi Gandolfi D, Park MH, Pe’ery T, Mathews MB (2009) Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology 6:90–106

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jansson BPM, Malandrin L, Johansson HE (2000) Cell cycle arrest in archaea by the hypusination inhibitor N1-guanyl-1,7-diaminoheptane. J Bacteriol 182:1158–1161

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AG, Grosely R, Petrov AN, Puglisi JD (2017) Dynamics of IRES-mediated translation. Philos Trans R Soc B 372. pii: 20160177

    Google Scholar 

  • Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N (2011) Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–948

    CrossRef  CAS  PubMed  Google Scholar 

  • Kyrpides NC, Woese CR (1998) Universally conserved translation initiation factors. Proc Natl Acad Sci U S A 95:224–228

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecompte O, Ripp R, Thierry JC, Moras D, Poch O (2002) Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 30:5382–5390

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Londei P (2005) Evolution of translational initiation: new insights from the archaea. FEMS Microbiol Rev 29:185–200

    CrossRef  CAS  PubMed  Google Scholar 

  • Maag D, Fekete CA, Gryczynski Z, Lorsch JR (2005) A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol Cell 17:265–275

    CrossRef  CAS  PubMed  Google Scholar 

  • Maag D, Algire MA, Lorsch JR (2006) Communication between eukaryotic translation initiation factors 5 and 1A within the ribosomal pre-initiation complex plays a role in start site selection. J Mol Biol 356:724–737

    CrossRef  CAS  PubMed  Google Scholar 

  • Mandal A, Mandal S, Park MH (2014) Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS One 9:e111800

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Maone E, Di Stefano M, Berardi A, Benelli D, Marzi S, La Teana A, Londei P (2007) Functional analysis of the translation factor aIF2/5B in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 65:700–713

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnikov S, Mailliot J, Shin BS, Rigger L, Yusupova G, Micura R, Dever TE, Yusupov M (2016) Crystal structure of hypusine-containing translation factor eIF5A bound to a rotated eukaryotic ribosome. J Mol Biol 428:3570–3576

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterman IA, Evfratov SA, Dzama MM, Pletnev PI, Kovalchuk SI, Butenko IO, Pobeguts OV, Golovina AY, Govorun VM, Bogdanov AA, Sergiev PV, Dontsova OA (2015) A bacterial homolog YciH of eukaryotic translation initiation factor eIF1 regulates stress-related gene expression and is unlikely to be involved in translation initiation fidelity. RNA Biol 12:966–971

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38:491–500

    CrossRef  CAS  PubMed  Google Scholar 

  • Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V (2007) The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26:41–50

    CrossRef  CAS  PubMed  Google Scholar 

  • Pedullà N, Palermo R, Hasenöhrl D, Bläsi U, Cammarano P, Londei P (2005) The archaeal eIF2 homologue: functional properties of an ancient translation initiation factor. Nucleic Acids Res 33:1804–1812

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Preiss T (2016) All Ribosomes are created equal. Really? Trends Biochem Sci 41:121–123

    CrossRef  CAS  PubMed  Google Scholar 

  • Prunetti L, Graf M, Blaby IK, Peil L, Makkay AM, Starosta AL, Papke RT, Oshima T, Wilson DN, de Crécy-Lagard V (2016) Deciphering the translation initiation factor 5A modification pathway in halophilic Archaea. Archaea 2016:7316725

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Quintas-Granados LI, Carvajal Gamez BI, Villalpando JL, Ortega-Lopez J, Arroyo R, Azuara-Liceaga E, Álvarez-Sánchez ME (2016) Bifunctional activity of deoxyhypusine synthase/hydroxylase from Trichomonas vaginalis. Biochimie 123:37–51

    CrossRef  CAS  PubMed  Google Scholar 

  • Rossi D, Kuroshu R, Zanelli CF, Valentini SR (2014) eIF5A and EF-P: two unique translation factors are now traveling the same road. Wiley Interdiscip Rev RNA 5:209–222

    CrossRef  CAS  PubMed  Google Scholar 

  • Schmidt C, Becker T, Heuer A, Braunger K, Shanmuganathan V, Pech M, Berninghausen O, Wilson DN, Beckmann R (2016) Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res 44:1944–1951

    CrossRef  PubMed  Google Scholar 

  • Schmitt E, Naveau M, Mechulam Y (2010) Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett 584:405–412

    CrossRef  CAS  PubMed  Google Scholar 

  • Si K, Maitra U (1999) The Saccharomyces cerevisiae homologue of mammalian translation initiation factor 6 does not function as a translation initiation factor. Mol Cell Biol 19:1416–1426

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Starosta AL, Lassak J, Peil L, Atkinson GC, Woolstenhulme CJ, Virumäe K, Buskirk A, Tenson T, Remme J, Jung K, Wilson DN (2014) A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P. Cell Rep 9:476–483

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K (2013) Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339:82–85

    CrossRef  CAS  PubMed  Google Scholar 

  • Valenzuela DM, Chaudhuri A, Maitra U (1982) Eukaryotic ribosomal subunit anti-association activity of calf liver is contained in a single polypeptide chain protein of Mr = 25,500 (eukaryotic initiation factor 6). J Biol Chem 257:7712–7719

    CAS  PubMed  Google Scholar 

  • Wagner S, Klug G (2007) An archaeal protein with homology to the eukaryotic translation initiation factor shows ribonucleolytic activity. J Biol Chem 282:13966–13976

    CrossRef  CAS  PubMed  Google Scholar 

  • Weis F, Giudice E, Churcher M, Jin L, Hilcenko C, Wong CC, Traynor D, Kay RR, Warren AJ (2015) Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol 22:914–919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanelli CF, Valentini SR (2005) Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant. Genetics 171:1571–1581

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J 17:2914–2925

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Londei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benelli, D., La Teana, A., Londei, P. (2017). Translation Regulation: The Archaea-Eukaryal Connection. In: Clouet-d'Orval, B. (eds) RNA Metabolism and Gene Expression in Archaea. Nucleic Acids and Molecular Biology, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-65795-0_3

Download citation