Asymptotic Analysis of Perforated Membranes, Plates and Shells

  • Igor V. AndrianovEmail author
  • Jan AwrejcewiczEmail author
  • Vladyslav V. DanishevskyyEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 77)


The perforated membranes, plates and shells are widely used in the numerous technical applications, and some examples are shown in the Fig. 7.1.


  1. 1.
    Cioranescu, D., and J.S.J. Paulin. 1979. Homogenization in open sets with holes. The Journal of Mathematical Analysis and Applications 71: 590–607.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Dal Maso, G., and F. Murat. 1997. Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. The Annali della Scuola Normale Superiore di Pisa 7 (4): 765–803.zbMATHGoogle Scholar
  3. 3.
    Duvaut, G. 1977. Comportement macroscopique d’une plaque perforée périodiquement. Lecture Notes in Mathematics 594: 131–145.CrossRefzbMATHGoogle Scholar
  4. 4.
    Lions, J.-L. 1980. Asymptotic expansion in perforated media with a periodic structure. Rocky Mountain Journal of Mathematics 10 (1): 125–140.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Nazarov, S.A., and A.S. Slutskii. 2006. Homogenization of an elliptic system under condensing perforation of the domain. St. Petersburg Mathematical Journal 17 (6): 989–1014.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Oleynik, O.A., A.S. Shamaev, and G.A. Yosif’yan. 1992. Mathematical Problems in Elasticity and Homogenization. Amsterdam: North-Holland.Google Scholar
  7. 7.
    Calvo-Jurado, C., and J. Casado-Diaz. 2002. The limit of Dirichlet systems for variable monotone operators in general perforated domains. Journal de Mathématiques Pures et Appliquées 81 (5): 471–493.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Casado-Diaz, J. 2000. Homogenization of Dirichlet pseudomonotone problems with renormalized solutions in perforated domains. Journal de Mathématiques Pures et Appliquées 79 (6): 553–590.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cioranescu, D., P. Donato, and R. Zaki. 2006. Periodic unfolding and Robin problem in perforated domain. Comptes Rendus de l Académie des Sciences Paris Series I 342: 469–474.zbMATHMathSciNetGoogle Scholar
  10. 10.
    Cioranescu, D., A. Damlamian, G. Griso, and D. Onofrei. 2008. The periodic unfolding method for perforated domains and Neumann sieve models. Journal de Mathématiques Pures et Appliquées 89: 248–277.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Grigolyuk, E.I., and L.A. Fil’shtinsky. 1970. Perforated Plates and Shells. Moscow (in Russian): Nauka.Google Scholar
  12. 12.
    Lewinski, T., and J.J. Telega. 2000. Plates, Laminates and Shells: Asymptotic Analysis and Homogenization. River Edge, NJ: World Scientific.Google Scholar
  13. 13.
    Berlyand, L.V. 1983. An asymptotic description for a thin plate with a large number of small holes. Ukrainian Academy of Science Reports Series A 10: 5–8. (in Russian).Google Scholar
  14. 14.
    Berlyand, L.V. 1983. On the vibration of an elastic body with a large number of small holes. Ukrainian Academy of Science Reports Series A 2: 3–5. (in Russian).Google Scholar
  15. 15.
    Berlyand, L.V., and I.Yu. Chudinovich. 1983. Averaging of boundary value problems for higher order differential operators in domains with holes. Soviet Mathematics Doklady 28 (2): 427–430.Google Scholar
  16. 16.
    Mokryakov, V.V. 2010. Study of the dependence of the effective compliances of a plane with an array of circular holes on array parameters. Computational Continuum Mechanics 3 (3): 90–101.CrossRefGoogle Scholar
  17. 17.
    Englund, J., and J. Helsing. 2001. Stress computations on perforated polygonal domains. Engineering Analysis with Boundary Elements 25 (3): 191–202.CrossRefzbMATHGoogle Scholar
  18. 18.
    Helsing, J. 1993. Bounds to the conductivity of some two-component composities. Journal of Applied Physics 73 (3): 1240–1245.CrossRefGoogle Scholar
  19. 19.
    Helsing, J. 1994. Improved bounds on the conductivity of composite by interpolation. Proceedings of the Royal Society of London A 444: 363–374.Google Scholar
  20. 20.
    Helsing, J., and A. Jonsson. 2003. Complex variable boundary integral equations for perforated infinite planes. Engineering Analysis with Boundary Elements 27 (5): 533–546.CrossRefzbMATHGoogle Scholar
  21. 21.
    Shevlyakov, Y.A., and A.A. Skoblin. 1993. Relative stiffness of irregularly perforated plates. Journal of Soviet Mathematics 65 (1): 1389–1395.CrossRefGoogle Scholar
  22. 22.
    Lukkassen, D., A. Meidell, A. Piatnitski, and A. Shamaev. 2009. Twisting a thin periodically perforated elastic rod. Applicable Analysis 88: 1563–1577.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Movchan, A.B., and J.R. Willis. 1997. Asymptotic analysis of reinforcement by frictional fibres. Proceedings of the Royal Society of London A 453: 757–784.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Movchan, A.B., N.A. Nicorovici, and R.C. McPhedran. 1997. Green’s tensors and lattice sums for elastostatics and elastodynamics. Proceedings of the Royal Society of London A 453: 643–662.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Movchan, A.B., N.V. Movchan, and C.G. Poulton. 2002. Asymptotic Models of Fields in Dilute and Densely Packed Composites. London: Imperial College Press.CrossRefzbMATHGoogle Scholar
  26. 26.
    Balagurov, B.Ya. 2001. Effective electrical characteristics of a two-dimensional three-component doubly-periodic system with circular inclusions. The Journal of Experimental and Theoretical Physics 92 (1): 123–134.CrossRefGoogle Scholar
  27. 27.
    Balagurov, B.Ya. 2001. Partial moments of electric field strength in the problem of conduction of binary composites. The Journal of Experimental and Theoretical Physics 93 (4): 824–832.CrossRefGoogle Scholar
  28. 28.
    Brovko, G.L., and A.A. Ilyushin. 1993. On one plane model of perforated plates. Moscow University Mechanics Bulletin 2: 83–91.Google Scholar
  29. 29.
    Nagayev, R.F., and K.Sh. Hodjayev. 1973. Oscillations of Mechanical Systems with Periodic Structures. Tashkent (in Russian): Fan.Google Scholar
  30. 30.
    Pan’kov, A.A. 1998. Generalized self-consistent method: Modeling and computation of effective elastic properties of composites with composite or hollow inclusions. Mechanics of Composite Materials 34 (2): 123–131.CrossRefGoogle Scholar
  31. 31.
    Ivanov, O.N., and I.N. Ivanov. 1960. Rigidity of circle densely perforated plates with simple quadratic array of holes. Chemical Engineering 1: 33–35.Google Scholar
  32. 32.
    Lim, C.W., and K.M. Liew. 1995. Vibrations of perforated plates with rounded corners. Journal of Engineering Mechanics 121: 203–213.CrossRefGoogle Scholar
  33. 33.
    Preobrazhenskii, N.I. 1980. Dynamic questions of the theory for thin-walled elements of supporting structures weakened by cut-outs (a review). Part 1, Strength of Materials 12 (5): 622–631.Google Scholar
  34. 34.
    Preobrazhenskii, N.I. 1980. Dynamic problems of the theory of thin-walled elements of load-bearing structures weakened by cutouts (review). Part II, Strength of Materials 12 (6): 781–793.Google Scholar
  35. 35.
    Andreyev, D.S., and E.A. Arriaga. 2007. Fabrication of perforated sub-micron silica shells. Scripta Materialia 57 (10): 957–959.CrossRefGoogle Scholar
  36. 36.
    Nash, E.P. 2005. Manhattan Skyscrapers. N.Y.: Princeton Architectural Press.Google Scholar
  37. 37.
    Bauer, F., and E. L. Reiss. 1966. Stresses in a perforated cylindrical shell. International Journal Of Solids and Structures. 2 (2): 141–156.Google Scholar
  38. 38.
    Petrov, I.B., F.B. Chelnokov, and V.V. Chibrikov. 2003. Numerical study of wave processes in a perforated deformable medium. Mathematical Modelling 15 (10): 89–94.zbMATHGoogle Scholar
  39. 39.
    Cousseau, P., M. Schlax, R. Engelstad, and E. Lovell. 1998. Natural frequencies of perforated cylindrical shells. Proceedings 16th International Modal Analysis Conference. Santa Barbara, USA 3243 (1): 1054–1060.Google Scholar
  40. 40.
    Ghergu, M., G. Griso, H. Mechkour, and B. Miara. 2005. Homogénéisation de coques minces piézoélectriques perforés. Comptes Rendus de l’Académie des Sciences Paris Seres II: Mécanique 333: 249–255.zbMATHGoogle Scholar
  41. 41.
    Ghergu, M., G. Griso, and B. Miara. 2007. Homogenization of thin piezoelectric perforated shells. Mathematical Modelling and Numerical Analysis 41: 875–895.CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Kalamkarov, A.L. 1992. Composite and Reinforced Elements of Construction. Chichester, N.Y.: Wiley.zbMATHGoogle Scholar
  43. 43.
    Bourgat, J.F. 1979. Numerical experiments of the homogeneisation method for operators with periodic coefficients. Lectures Notes in Mathematics 704: 330–356.Google Scholar
  44. 44.
    Timoshenko, S.P., and S. Woinowsky-Krieger. 1987. Theory of Plates and Shells. N.Y.: McGraw-Hill.zbMATHGoogle Scholar
  45. 45.
    Pickett, G. 1965. Bending, buckling and vibration of plates with holes. Developments in Theoretical and Applied Mechanics , vol. 2, Oxford-London: Pergamon Press: 9–22.Google Scholar
  46. 46.
    Kantorovich, L.V., and V.I. Krylov. 1958. Approximate Methods of Higher Analysis. Groningen: Noordhoff.zbMATHGoogle Scholar
  47. 47.
    Bakhvalov, N., and G. Panasenko. 1989. Averaging Processes in Periodic Media. Mathematical Problems in Mechanics of Composite Materials. Dordrecht: Kluwer.zbMATHGoogle Scholar
  48. 48.
    Yakovlev, Y.V. 1954. Investigation of rigidity of densely perforated plates. Proceedings of Kharkov Aviation Institute 15: 149–152.Google Scholar
  49. 49.
    Savin, G.N. 1970. Stress distribution around holes. NASA Technology Transfer TTF–607: 626–631.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Allgemeine MechanikRWTH Aachen UniversityAachenGermany
  2. 2.Automation, Biomechanics and MechatronicsLodz University of TechnologyŁódźPoland
  3. 3.School of Computing and MathematicsKeele UniversityKeeleUK

Personalised recommendations