Advertisement

Symbolic Dependency Graphs for \(\text {PCTL}^{>}_{\le }\) Model-Checking

  • Anders Mariegaard
  • Kim Guldstrand Larsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10419)

Abstract

We consider the problem of model-checking a subset of probabilistic CTL, interpreted over (discrete-time) Markov reward models, allowing the specification of lower bounds on the probability of the set of paths satisfying a cost-bounded path formula. We first consider a reduction to fixed-point computations on a graph structure that encodes a division of the problem into smaller sub-problems by explicit unfolding of the given formula into sub-formulae. Although correct, the size of the graph constructed is highly dependent on the size of the cost bound. To this end, we provide a symbolic extension, effectively ensuring independence between the size of the graph and the cost-bound.

Keywords

Model-checking Probabilistic CTL Dependency graphs 

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). http://dx.doi.org/10.1016/0304-3975(94)90010-8 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Andova, S., Hermanns, H., Katoen, J.-P.: Discrete-time rewards model-checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-40903-8_8 CrossRefGoogle Scholar
  3. 3.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  4. 4.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced time automata. In: Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001). doi: 10.1007/3-540-45351-2_15 CrossRefGoogle Scholar
  5. 5.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). doi: 10.1007/11539452_9 CrossRefGoogle Scholar
  6. 6.
    Christoffersen, P., Hansen, M., Mariegaard, A., Ringsmose, J.T., Larsen, K.G., Mardare, R.: Parametric verification of weighted systems. In: 2nd International Workshop on Synthesis of Complex Parameters, SynCoP 11, 2015, London, UK, pp. 77–90 (2015). http://dx.doi.org/10.4230/OASIcs.SynCoP.2015.77
  7. 7.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986). http://doi.acm.org/10.1145/5397.5399 CrossRefMATHGoogle Scholar
  8. 8.
    Dalsgaard, A.E., et al.: Extended dependency graphs and efficient distributed fixed-point computation. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp. 139–158. Springer, Cham (2017). doi: 10.1007/978-3-319-57861-3_10 CrossRefGoogle Scholar
  9. 9.
    Dalsgaard, A.E., Enevoldsen, S., Larsen, K.G., Srba, J.: Distributed computation of fixed points on dependency graphs. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 197–212. Springer, Cham (2016). doi: 10.1007/978-3-319-47677-3_13 CrossRefGoogle Scholar
  10. 10.
    Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: a modern probabilistic model checker. CoRR abs/1702.04311 (2017). http://arxiv.org/abs/1702.04311
  11. 11.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994). http://dx.doi.org/10.1007/BF01211866 CrossRefMATHGoogle Scholar
  12. 12.
    Howard, R.A.: Dynamic Probabilistic Systems, vol. 2. Wiley, New York (1971)MATHGoogle Scholar
  13. 13.
    Jensen, J.F., Larsen, K.G., Srba, J., Oestergaard, L.K.: Efficient model-checking of weighted CTL with upper-bound constraints. STTT 18(4), 409–426 (2016). http://dx.doi.org/10.1007/s10009-014-0359-5 CrossRefGoogle Scholar
  14. 14.
    Katoen, J., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Second International Conference on the Quantitative Evaluaiton of Systems (QEST 2005), Torino, Italy, 19–22 September 2005, pp. 243–244 (2005). http://dx.doi.org/10.1109/QEST.2005.2
  15. 15.
    Kleene, S.C.: Introduction to metamathematics. Van Nostrand, Princeton (1952)MATHGoogle Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  17. 17.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–152 (1997). http://dx.doi.org/10.1007/s100090050010 CrossRefMATHGoogle Scholar
  18. 18.
    Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 53–66. Springer, Heidelberg (1998). doi: 10.1007/BFb0055040 CrossRefGoogle Scholar
  19. 19.
    Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013). http://dx.doi.org/10.1007/s10703-012-0177-x CrossRefMATHGoogle Scholar
  20. 20.
    Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geometry and Logic. LNM, vol. 274, pp. 97–136. Springer, Heidelberg (1972). doi: 10.1007/BFb0073967 CrossRefGoogle Scholar
  21. 21.
    Tarski, A., et al.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5(2), 285–309 (1955)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations