Abstract
We introduce a new formalism called automata over a timed domain which provides an adequate framework for the determinization of timed systems. In this formalism, determinization w.r.t. timed language is always possible at the cost of changing the timed domain. We give a condition for determinizability of automata over a timed domain without changing the timed domain, which allows us to recover several known determinizable classes of timed systems, such as strongly-non-zeno timed automata, integer-reset timed automata, perturbed timed automata, etc. Moreover in the case of timed automata this condition encompasses most determinizability conditions from the literature.
This work was supported by ERC project EQualIS (308087).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Deterministic for a timed automaton means that any two transitions out of the same state and carrying the same letter should have disjoint timing constraints.
References
Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)
Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994). doi:10.1007/3-540-58179-0_39
Alur, R., Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31954-2_5
Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: SSC 1998, pp. 469–474. Elsevier (1998)
Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02930-1_4
Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theoret. Comput. Sci. 321(2–3), 291–345 (2004)
Bojańczyk, M., Lasota, S.: A machine-independent characterization of timed languages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 92–103. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31585-5_12
Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize timed automata. Formal Meth. Syst. Des. 46(1), 42–80 (2015)
D’souza, D., Madhusudan, P.: Timed control synthesis for external specifications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer, Heidelberg (2002). doi:10.1007/3-540-45841-7_47
D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3_7
Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006). doi:10.1007/11867340_14
Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth. Syst. Des. 34(3), 238–304 (2009)
Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: LICS 2004, pp. 54–63. IEEE Computer Society Press (2004)
Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Inf. Process. Lett. 99(6), 222–226 (2006)
Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with integer resets: language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85778-5_7
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bouyer, P., Jaziri, S., Markey, N. (2017). On the Determinization of Timed Systems. In: Abate, A., Geeraerts, G. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2017. Lecture Notes in Computer Science(), vol 10419. Springer, Cham. https://doi.org/10.1007/978-3-319-65765-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-65765-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65764-6
Online ISBN: 978-3-319-65765-3
eBook Packages: Computer ScienceComputer Science (R0)