Advertisement

Webs: Diversity, Structure and Function

Chapter

Abstract

Web building has been such a highly successful foraging innovation among spiders that the vast majority of extant spiders are web builders. The structure of spider webs varies substantially between species, and web building has even been lost completely in some clades. Examples of different web forms include the classic orb webs, which may be orientated vertical to the ground or horizontal, sheet webs, and cobwebs, which consist of three-dimensional meshwork and ascending sticky threads for support and capture of prey. The architecture of webs may also vary within clades and even within species. This may be a consequence of: (i) individuals adapting their web structures to the environment; e.g., larger webs are built in areas where more space is available, (ii) spiders varying their webs to tune its performance, e.g., when spiders are exposed to different prey, or (iii) silk expression constraints, e.g., when on diets lacking certain nutrients. We review the literature, focusing on contributions from the Neotropical region, showing that spider webs vary in structure and function at multiple levels and so must be considered a dynamic, variable, extended phenotype of its builder. Webs accordingly depict the foraging, mating, and defensive strategies, and physiological status, of the spider.

References

  1. Agnarsson I (2002) Sharing a web: on the relation of sociality and kleptoparasitism in theridiid spiders (Theridiidae, Araneae). J Arachnol 30:181–188CrossRefGoogle Scholar
  2. Agnarsson I (2003a) The phylogenetic placement and circumscription of the genus Synotaxus (Araneae: Synotaxidae), a new species from Guyana, and notes on theridioid phylogeny. Invertebr Syst 17:719–734CrossRefGoogle Scholar
  3. Agnarsson I (2003b) Spider webs as habitat patches — the distribution of kleptoparasites (Argyrodes, Theridiidae) among host webs (Nephila, Tetragnathidae). J Arachnol 31:344–349CrossRefGoogle Scholar
  4. Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linnean Soc 141:447–626CrossRefGoogle Scholar
  5. Agnarsson I (2011) Habitat patch size and isolation as predictors of occupancy and number of argyrodine spider kleptoparasites in Nephila webs. Naturwissenschaften 98:163–167PubMedCrossRefGoogle Scholar
  6. Agnarsson I, Avilés L, Coddington JA, Maddison WP (2006) Sociality in Theridiid spiders: repeated origins of an evolutionary dead end. Evolution 60:2342–2351PubMedCrossRefGoogle Scholar
  7. Agnarsson I, Maddison WP, Avilés L (2007) The phylogeny of the social Anelosimus spiders (Araneae: Theridiidae) inferred from six molecular loci and morphology. Mol Phylogenet Evol 43:833–851PubMedCrossRefGoogle Scholar
  8. Alayón GG (2003) Cyrtophora citricola (Araneae: Araneidae), registro neuvo de araña para Cuba. Cocuyo 13:14Google Scholar
  9. Ayoub NA, Garb JE, Kuelbs A, Hayashi CY (2013) Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol Biol Evol 30:589–601PubMedCrossRefGoogle Scholar
  10. Baldissera R, Ganade G, Brescovit AD, Hartz SM (2008) Landscape mosaic of Araucaria forest and forest monoculture influencing understory spider assemblages in southern Brazil. Austral Ecol 33:45–54CrossRefGoogle Scholar
  11. Barrantes G, Eberhard WG (2007) The evolution of prey-wrapping behaviour in spiders. J Nat Hist 41:1631–1658CrossRefGoogle Scholar
  12. Barrantes G, Weng JL (2006) Viscid globules in webs of the spider Achaearanea tesselata (Araneae: Theridiidae). J Arachnol 34:480–482CrossRefGoogle Scholar
  13. Benjamin SP, Duggelin M, Zschokke S (2002) Fine structure of sheet-webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall), with remarks on the presence of viscid silk. Acta Zool 83:49–59CrossRefGoogle Scholar
  14. Benjamin SP, Zschokke S (2002) Untangling the tangle web: web construction behaviours of the gumfooted spider Steatoda triangulos and comments on phylogenetic implications (Araneae: Theridiidae). J Insect Behav 15:791–809CrossRefGoogle Scholar
  15. Berry JW (1987) Notes on the life history and behavior of the communal spider Cyrtophora moluccensis (Doleschall) (Araneae, Araneidae) in Yap, Carolina Islands. J Arachnol 15:309–319Google Scholar
  16. Bishop L, Connolly SR (1992) Web orientation, thermoregulation, and prey capture efficiency in a tropical forest spider. J Arachnol 20:173–178Google Scholar
  17. Blackledge TA, Gillespie RG (2002) Estimation of capture areas of spider webs in relation to web asymmetry. J Arachnol 30:70–77CrossRefGoogle Scholar
  18. Blackledge TA, Hayashi CY (2006) Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol 209:2452–2461PubMedCrossRefGoogle Scholar
  19. Blackledge TA, Zevenbergen JM (2006) Mesh width influences prey retention in spider orb webs. Ethology 112:1194–1201CrossRefGoogle Scholar
  20. Blackledge TA, Zevenbergen JM (2007) Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Anim Behav 73:855–864CrossRefGoogle Scholar
  21. Blackledge TA, Summers AP, Hayashi CY (2005) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology 108:41–46PubMedCrossRefGoogle Scholar
  22. Blackledge TA, Scharff N, Coddington JA, Szuts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA 106:5229–5234PubMedPubMedCentralCrossRefGoogle Scholar
  23. Blackledge TA, Kuntner M, Agnarsson I (2011) The form and function of spider orb webs: evolution from silk to ecosystems. Adv Insect Physiol 41:175–262CrossRefGoogle Scholar
  24. Blackledge TA, Perez-Riguiero J, Plaza GR, Perea B, Navarro A, Guinea GV, Elices M (2012) Sequential origin in the high performance properties of orb spider dragline silk. Sci Rep 2:782PubMedPubMedCentralCrossRefGoogle Scholar
  25. Blamires SJ, Lee YH, Chang CM, Lin IT, Cheg JA, Lin TY, Tso IM (2010) Multiple structures interactively influence prey capture efficiency in spider orb webs. Anim Behav 80:947–953CrossRefGoogle Scholar
  26. Blamires SJ, Chao IC, Liao CP, Tso IM (2011) Multiple prey cues induce foraging flexibility in a trap-building predator. Anim Behav 81:955–961CrossRefGoogle Scholar
  27. Blamires SJ, Hou C, Chen LF, Liao CP, Tso IM (2013) Three-dimensional barricading of a predatory trap reduces predation and enhances prey capture. Behav Ecol Sociobiol 67:709–714CrossRefGoogle Scholar
  28. Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM (2014a) Nutrient deprivation induces property variations in spider gluey silk. PLoS One 9:e88487PubMedPubMedCentralCrossRefGoogle Scholar
  29. Blamires SJ, Hou C, Chen LF, Liao CP, Tso IM (2014b) A predator’s body coloration enhances its foraging profitability by day and night. Behav Ecol Sociobiol 68:1253–1260CrossRefGoogle Scholar
  30. Blamires SJ, Piorkowski D, Chuang A, Tseng YH, Toft S, Tso IM (2015) Can differential nutrient extraction explain property variations in a predatory trap? R Soc Open Sci 2:140479PubMedPubMedCentralCrossRefGoogle Scholar
  31. Blamires SJ, Tseng YH, Wu CL, Toft S, Raubenheimer D, Tso IM (2016) Spider silk and web performance landscapes across nutrient space. Sci Rep 6:26383PubMedPubMedCentralCrossRefGoogle Scholar
  32. Blamires SJ, Blackledge TA, Tso IM (2017) Physico-chemical property variation in spider silks: ecology, evolution and synthetic production. Annu Rev Entomol 62:443–460PubMedCrossRefGoogle Scholar
  33. Blasingame E, Tuton-Blasingame T, Falick AM, Zhao L, Fong J, Vaidyanathan V, Vispers A, Guerts P, Hu XW, LaMattina C, Viera C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284:29097–29108PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bonaldo AB, Marques MAL, Pinto-da-Rocha R, Gardner T (2007) Species richness and community structure of arboreal spider assemblages in fragments of three vegetational types at Banhado Grande wet plain, Gravataí River, Rio Grande do Sul, Brazil. Iheringia 97:143–151CrossRefGoogle Scholar
  35. Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 24:1765–1771PubMedCrossRefGoogle Scholar
  36. Boutry C, Blackledge TA (2010) Evolution of supercontraction in spider silk: structure–function relationship from tarantulas to orb-weavers. J Exp Biol 213:3505–3514PubMedCrossRefGoogle Scholar
  37. Boutry C, Blackledge TA (2013) Wet webs work better: humidity, supercontraction and the performance of spider orb webs. J Exp Biol 216:3606–3610PubMedCrossRefGoogle Scholar
  38. Boutry C, Blamires SJ (2013) Plasticity in spider webs and silk: an overview of current evidence. In: Santerre M (ed) Spiders: morphology behavior and geographic distribution. Nova, New York, pp 1–46Google Scholar
  39. Briceno RD, Eberhard WG (2011) The hub as a launching platform: rapid movements of the spider Leucauge mariana (Araneae: Tetragnathidae) as it turns to attack prey. J Arachnol 39:102–112CrossRefGoogle Scholar
  40. Brooks DM (2012) Birds caught in spider webs: a synthesis of patterns. Wilson J Ornithol 124:345–353CrossRefGoogle Scholar
  41. Castanho LM, Oliveira PS (1997) Biology and behaviour of the neotropical ant-mimicking spider Aphantochilus rogersi (Araneae: Aphantochilidae): nesting, maternal care and ontogeny of ant-hunting techniques. J Zool 242:643–650CrossRefGoogle Scholar
  42. Cheng RC, Yang EC, Lin EP, Herberstein ME, Tso IM (2010) Insect form vision as one potential shaping force of spider web decoration design. J Exp Biol 213:759–768PubMedCrossRefGoogle Scholar
  43. Choresh O, Bayarmagnai B, Lewis RV (2009) Spider web glue: two proteins expressed from opposite strands of the same DNA sequence. Biomacromolecules 10:2852–2856PubMedCrossRefGoogle Scholar
  44. Clarke TH, Garb JE, Hayashi VY, Arensberger P, Ayoub NA (2015) Spider transcriptomes identify ancient large-scale gene duplication event potentially important in silk gland evolution. Genome Biol Evol 7:1856–1870PubMedPubMedCentralCrossRefGoogle Scholar
  45. Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk like “spacer regions”. Protein Sci 7:667–672PubMedPubMedCentralCrossRefGoogle Scholar
  46. Collin MA, Clarke TH, Ayoub NA, Hayashi CY (2016) Evidence from multiple species that spider silk glue component ASG2 is a spidroin. Sci Rep 6:21589PubMedPubMedCentralCrossRefGoogle Scholar
  47. Craig CL (1986) Orb-web visibility: the influence of insect flight behaviour and visual physiology on the evolution of web designs within the Araneoidea. Anim Behav 34:54–68CrossRefGoogle Scholar
  48. Craig CL (1987) The ecological and evolutionary interdependence between web architecture and web silk spun by orb web weaving spiders. Biol J Linn Soc 30:135–162CrossRefGoogle Scholar
  49. Craig CL (2003) Spiderwebs and silk: tracing evolution from molecules to genes to phenotypes. Oxford University Press, OxfordGoogle Scholar
  50. Craig CL, Bernard GD, Coddington JA (1994) Evolutionary shifts in the spectral properties of spider silks. Evolution 48:287–296PubMedCrossRefGoogle Scholar
  51. Denny MW (1976) The physical properties of spider’s silk and their role in the design of orb webs. J Exp Biol 65:483–506Google Scholar
  52. Dimitrov D, Benavides LR, Arnedo MA, Giribet G, Griswold CE, Scharff N, Hormiga G (2017) Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family–rank classification (Araneae, Araneoidea). Cladistics 33:221–250.  https://doi.org/10.1111/cla.12165 CrossRefGoogle Scholar
  53. Eberhard WG (1972) The web of Uloborus diversus (Araneae : Uloboridae). J Zool 166:417–465CrossRefGoogle Scholar
  54. Eberhard WG (1973) Stabilimenta on the webs of Uloborus diversus (Araneae: Uloboridae) and other spiders. J Zool 171:367–384CrossRefGoogle Scholar
  55. Eberhard WG (1975) The ‘inverted ladder’ orb web of Scoloderus sp. and the intermediate orb of Eustala (?) sp. Araneae : Araneidae. J Nat Hist 9:93–106CrossRefGoogle Scholar
  56. Eberhard WG (1977) Rectangular orb-webs of Synotaxus (Araneae: Theridiidae). J Nat Hist 11:501–507CrossRefGoogle Scholar
  57. Eberhard WG (1987) Effects of gravity on temporary spiral construction by Leucauge mariana (Araneae: Araneidae). J Ethol 5:29–36CrossRefGoogle Scholar
  58. Eberhard WG (1988a) Memory of distances and directions moved as cues during temporary spiral construction in the spider Leucauge mariana (A., Araneidae). J Insect Behav 1:51–66CrossRefGoogle Scholar
  59. Eberhard WG (1988b) Behavioral flexibility in orb web construction: effects of supplies of different silk glands and spider size and weight. J Arachnol 16:295–302Google Scholar
  60. Eberhard WG (1990a) Function and phylogeny of spider webs. Annu Rev Ecol Syst 21:341–372CrossRefGoogle Scholar
  61. Eberhard WG (1990b) Early stages of orb construction by Philoponella vicina, Leucauge mariana, and Nephila clavipes (Araneae, Uloboridae and Tetragnathidae), and their phylogenetic implications. J Arachnol 18:205–234Google Scholar
  62. Eberhard WG (1995) The web and building behavior of Synotaxus ecuadorensis (Araneae, Synotaxidae). J Arachnol 23:25–30Google Scholar
  63. Eberhard WG (2003) Substitution of silk stabilimenta for egg sacs by Allocyclosa bifurca (Araneae: Araneidae) suggests that silk stabilimenta function as camouflage devices. Behaviour 140:847–868CrossRefGoogle Scholar
  64. Eberhard WG (2008) Araneus expletus (Araneae, Araneidae): another stabilimentum that does not function to attract prey. J Arachnol 36:191–194CrossRefGoogle Scholar
  65. Eberhard WG (2014) A new view of orb webs: multiple trap designs in a single structure. Biol J Linn Soc 111:437–449CrossRefGoogle Scholar
  66. Eberhard WG, Barrantes G (2015) Cues guiding uloborid construction behavior support orb web monophyly. J Arachnol 43:371–387CrossRefGoogle Scholar
  67. Eberhard WG, Pereira F (1993) Ultrastructire of cribellate silk of nine species in eight families and possible taxonomic implications (Araneae: Amaurobiidae, Deinopidae, Desidae, Dictynidae, Filistatidae, Hypochilidae, Stiphidiidae, Tengellidae). J Arachnol 21:161–174Google Scholar
  68. Eberhard WG, Agnarsson I, Levi HW (2008) Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order. Syst Biodivers 6:1–61CrossRefGoogle Scholar
  69. Edmonds DT, Vollrath F (1992) The contribution of atmospheric water vapour to the formation and efficiency of a spider’s capture web. Proc R Soci B 248:145–148CrossRefGoogle Scholar
  70. Eisner T, Alsop R, Ettershank G (1964) Adhesiveness of spider silk. Science 146:1058–1061PubMedCrossRefGoogle Scholar
  71. Elgar MA (1994) Experimental evidence of a mutualistic association between two web-building spiders. J Anim Ecol 63:880–886CrossRefGoogle Scholar
  72. Escalante I (2013) Ontogenetic and sexual differences in exploration and web construction in the spider Physocyclus globosus (Araneae: Pholcidae). Arachnology 16:61–68CrossRefGoogle Scholar
  73. Fernández R, Hormiga G, Giribet G (2014) Phylogenomic analysis of spiders reveals nonmonophyly of orb weavers. Curr Biol 24:1772–1777PubMedCrossRefGoogle Scholar
  74. Finke OM (1981) An association between two Neotropical spiders (Araneae: Uloboridae and Tengellidae). Biotropica 13:301–307CrossRefGoogle Scholar
  75. Forster LM, Forster RR (1985) A derivative of the orb web and its evolutionary significance. N Z J Zool 12:455–465CrossRefGoogle Scholar
  76. Forster RR, Platnick NI, Coddington JA (1990) A proposal and review of the spider family Synotaxidae (Araneae, Araneoidea), with notes on theridiid interrelationships. Bull Am Mus Nat Hist 193:1–116Google Scholar
  77. Garb JE, DiMauro T, Lewis RV, Hayashi CY (2007) Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Mol Biol Evol 24:2454–2464PubMedCrossRefGoogle Scholar
  78. Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243PubMedPubMedCentralCrossRefGoogle Scholar
  79. Getty RM, Coyler FA (1996) Observations on prey capture and anti-predator behaviors of ogre-faced spiders (Dienopis) in southern Costa Rica (Araneae, Dienopidae). J Arachnol 24:93–100Google Scholar
  80. Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Viera C (2012) Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13:304–312PubMedCrossRefGoogle Scholar
  81. Gonzaga MO, Vasconcellos-Neto J (2005) Testing the functions of detritus stabilimenta in webs of Cyclosa fililineata and Cyclosa morretes (Araneae : Araneidae): do they attract prey or reduce the risk of predation? Ethology 111:479–491CrossRefGoogle Scholar
  82. Gonzaga MO, Vasconcellos-Neto J (2012) Variation in the stabilimenta of Cyclosa fililineata Hingston, 1932, and Cyclosa morretes Levi, 1999 (Araneae: Araneidae), in southeastern Brazil. Psyche 2012:396594Google Scholar
  83. Gonzaga MO, Leiner NO, Santos AJ (2006) On the stick cobwebs of two theridiid spiders (Araneae: Theridiidae). J Nat Hist 40:293–306CrossRefGoogle Scholar
  84. González M, Costa FG, Peretti AV (2014) Strong phenological differences between two populations of a Neotropical funnel-web wolf spider. J Nat Hist 48:2183–2197CrossRefGoogle Scholar
  85. González M, Peretti AV, Costa FG (2015a) Reproductive isolation between two populations of Aglaoctenus lagotis, a funnel-web wolf spider. Biol J Linn Soc 114:646–658CrossRefGoogle Scholar
  86. González M, Costa FG, Peretti AV (2015b) Funnel-web construction and estimated immune costs in Aglaoctenus lagotis (Araneae: Lycosidae). J Arachnol 43:158–167CrossRefGoogle Scholar
  87. Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zool J Linnean Soc 123:1–99CrossRefGoogle Scholar
  88. Harmer ATM, Blackledge TA, Madin JS, Herberstein ME (2011) High-performance spider webs: integrating biomechanics, ecology and behaviour. J R Soc Interface 8:457–471PubMedCrossRefGoogle Scholar
  89. Hawthorn AC, Opell BD (2003) Van der Waals and hygroscopic forces of adhesion generated by spider capture threads. J Exp Biol 206:3905–3911PubMedCrossRefGoogle Scholar
  90. Hayashi CY, Lewis RV (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 275:773–784PubMedCrossRefGoogle Scholar
  91. Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21:1950–1959PubMedCrossRefGoogle Scholar
  92. Heiling AM, Herberstein ME (2000) Interpretations of orb-web variability: a review of past and current ideas. Ekologia 19:97–106Google Scholar
  93. Hénaut Y, Garcia-Ballinas JA, Alauzet C (2006) Variations in web construction in Leucauge venusta (Araneae, Tetragnathidae). J Arachnol 34:234–240CrossRefGoogle Scholar
  94. Herberstein ME, Hebets EA (2013) Behaviour: why are spiders good models for research? In: Penny D (ed) Spider research in the 21st century: trends and perspectives. SIRI Scientific Publishing, Manchester, pp 230–250Google Scholar
  95. Herberstein ME, Tso IM (2000) Evaluation of formulae to estimate the capture area and mesh height of orb webs (Araneoidea, Araneae). J Arachnol 28:180–184CrossRefGoogle Scholar
  96. Herberstein ME, Craig CL, Coddington JA, Elgar MA (2000a) The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biol Rev 75:649–669PubMedCrossRefGoogle Scholar
  97. Herberstein ME, Craig CL, Elgar MA (2000b) Foraging strategies and feeding regimes: web and decoration investment in Argiope keyserlingi Karsch (Araneae: Araneidae). Evol Ecol Res 2:69–80Google Scholar
  98. Hesselberg T (2010) Ontogenetic changes in web design in two orb-web spiders. Ethology 116:535–545CrossRefGoogle Scholar
  99. Hesselberg T, Triana E (2010) The web of the acacia orb-spider Eustala illicita (Araneae: Araneidae) with notes on its natural history. J Arachnol 38:21–26CrossRefGoogle Scholar
  100. Higgins LE (1992) Developmental changes in barrier web structure under different levels of predation risk in Nephila clavipes (Araneae: Tetragnathidae). J Insect Behav 5:635–655CrossRefGoogle Scholar
  101. Higgins LE, Buskirk RE (1998) Spider-web kleptoparasites as a model for studying producer-consumer interactions. Behav Ecol 9:384–387CrossRefGoogle Scholar
  102. Hinman MB, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin: Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem 267:19320–19324PubMedGoogle Scholar
  103. Hormiga GC, Griswold E (2014) Systematics, phylogeny, and evolution of orb-weaving spiders. Annu Rev Entomol 59:487–512PubMedCrossRefGoogle Scholar
  104. Hsia Y, Gnesa E, Jeffrey F, Tang S, Viera C (2011) Spider silk composites and applications. In: Cuppoletti J (ed) Metal ceramic and polymeric composites for various uses. Intech, Rijeka, pp 303–324Google Scholar
  105. Hu XW, Lawrence BD, Kohler K, Falick AM, Moore AMF, McMullen E, Jones PR, Viera C (2005) Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry 44:10020–10027PubMedCrossRefGoogle Scholar
  106. Hu XW, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Viera C (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303PubMedCrossRefGoogle Scholar
  107. Japyassu HF, Caires RA (2008) Hunting tactics in a cobweb spider (Araneae-Theridiidae) and the evolution of behavioral plasticity. J Insect Behav 21:258–284CrossRefGoogle Scholar
  108. Jorger KM, Eberhard WG (2006) Web construction and modification by Achaearanea tesselata (Araeae, Theridiidae). J Arachnol 34:511–523CrossRefGoogle Scholar
  109. Kohler T, Vollrath F (1995) Thread biomechanics in the two orb-weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae). J Exp Zool 271:1–17CrossRefGoogle Scholar
  110. Kuntner M, Kralj-Fiser S, Gregorič M (2010) Ladder webs in orb-web spiders: ontogenetic and evolutionary patterns in Nephilidae. Biol J Linn Soc 99:849–866CrossRefGoogle Scholar
  111. La Mattina C, Reza R, Hu XW, Falick AM, Vasanthavada K, McNary S, Yee R, Viera C (2008) Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus. Biochemistry 47:4692–4700PubMedCrossRefGoogle Scholar
  112. Lehtinen PT (1967) Classification of the cribellate spiders and some allied families, with notes on the evolution of the suborder Araneomorpha. Ann Zool Fenn 4:199–468Google Scholar
  113. Levi HW (1997) The American orb weavers of the genera Mecynogea, Manogea, Kapogea, and Cyrtophora (Araneae: Araneidae). Bull Mus Comp Zool 155:215–255Google Scholar
  114. Lewis RV (1992) Spider silk: the unraveling of a mystery. Acc Chem Res 25:392–398CrossRefGoogle Scholar
  115. Lopardo L, Ramirez MJ (2007) The combing of cribellar silk by the prithine Misionella mendensis, with notes on other Filistatid spiders (Araneae: Filistatidae). Am Mus Novit 3563:1–14CrossRefGoogle Scholar
  116. Lubin YD (1974) Adaptative advantages and the evolution of colony formation in Cyrtophora (Araneae, Araneidae). Zool J Linnean Soc 54:321–339CrossRefGoogle Scholar
  117. Lubin YD (1980) The predatory behavior of Crytophora (Araneae: Araneidae). J Arachnol 8:159–185Google Scholar
  118. Lubin YD (1986) Web building and prey capture in the Ulobidae. In: Shear WA (ed) Spiders: Webs Behavior and Evolution. Stanford University Press, Stanford, pp 132–171Google Scholar
  119. Lubin YD, Eberhard WG, Montgomery GG (1978) Webs of Miagrammopes (Araneae , Uloboridae) in the Neotropics. Psyche 85:1–23CrossRefGoogle Scholar
  120. Lubin Y, Kotzman M, Ellner S (1991) Ontogenetic and seasonal changes in webs and websites of a desert widow spider. J Arachnol 19:40–48Google Scholar
  121. Macrini CMT, Peres EA, Solferini VN (2015) Cryptic diversity of Agloactenus lagotis (Araneae, Lycosidae) in the Brazilian Atlantic rainforest: evidence from microsatellite and mitochondrial DNA sequence data. J Appl Biol Biotechol 3:009–014Google Scholar
  122. Madrigal-Brenes R, Barrantes G (2009) Construction and function of the web of Tidarren sisyphoides (Araneae: Theridiidae). J Arachnol 37:306–311CrossRefGoogle Scholar
  123. Magalhaes I, Santos AJ (2012) Phylogenetic analysis of Micrathena and Chaetacis spiders (Araneae: Araneidae) reveals multiple origins of extreme sexual size dimorphism and long abdominal spines. Zool J Linn Soc-Lond 166:14–53Google Scholar
  124. Messas YF, Souza HS, Gonzaga MO, Vasconcellos-Neto J (2014) Spatial distribution and substrate selection by the orb-weaver spider Eustala perfida Mello-Leitão, 1947 (Araneae: Araneidae). J Nat Hist 48:2645–2660CrossRefGoogle Scholar
  125. Moura RR, Gonzaga MO (2007) Temporal variation in size-assortative mating and male mate choice in a spider with amphisexual care. Sci Nat 104:28.  https://doi.org/10.1007/s00114-017-1448-6 CrossRefGoogle Scholar
  126. Moura RR, Leal LC, Kloss TG (2016) Does nutritional status constrain adoption of more costly and less risky behaviour in an Amazonian shelter-building spider? J Nat Hist 50:2829–2837CrossRefGoogle Scholar
  127. Moura RR, Vasconcellos-Neto J, Gonzaga MO (2017) Extended male care in Manogea porracea (Araneae: Araneidae): the exceptional case of a spider with amphisexual care. Anim Behav 123:1–9CrossRefGoogle Scholar
  128. Murphy NP, Framenau VW, Donnellan SC, Harvey MS, Park YC, Austin AD (2006) Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior. Mol Phylogenet Evol 38:583–602PubMedCrossRefGoogle Scholar
  129. Nascimento AL, Gonzaga MO (2015) Maternal defensive behaviors of Uloborus sp. (Aranea, Uloboridae): behavioral repertoire and influence of clutch size and female size on female aggressiveness. Acta Ethol 19:33–41CrossRefGoogle Scholar
  130. Nentwig W, Christenson TE (1986) Natural history of the non-solitary sheetweaving spider Anelosimus jucundus (Araneae: Theridiidae). Zool J Linnean Soc 87:27–35CrossRefGoogle Scholar
  131. Nyffeler M, Knornschild M (2013) Bat predation by spiders. PLoS One 8:e58120PubMedPubMedCentralCrossRefGoogle Scholar
  132. Opell BD (1982) Post-hatching development and web production of Hyptiotes cavatus (Hentz) (Araneae, Uloboridae). J Arachnol 10:185–191Google Scholar
  133. Opell BD (1987) The new species Philoponella herediae and its modified orb-web (Araneae , Uloboridae). J Arachnol 15:59–63Google Scholar
  134. Opell BD (1994a) Factors governing the stickiness of cribellar prey capture threads in the spider family Uloboridae. J Morphol 222:111–119CrossRefGoogle Scholar
  135. Opell BD (1994b) Increased stickiness of prey capture threads accompanying web reduction in the spider family Uloboridae. Funct Ecol 8:85–90CrossRefGoogle Scholar
  136. Opell BD (1996) Functional similarities of spider webs with diverse architectures. Am Nat 148:630–648CrossRefGoogle Scholar
  137. Opell BD (1998) Economics of spider orb-webs: the benefits of producing adhesive capture threads and of recycling silk. Funct Ecol 12:613–624CrossRefGoogle Scholar
  138. Opell BD, Bond JE (2000) Capture thread extensibility of orb-weaving spiders: testing punctuated and associative explanations of character evolution. Biol J Linn Soc 70:107–120CrossRefGoogle Scholar
  139. Opell BD, Eberhard WG (1984) Resting postures of orb-weaving uloborid spiders (Araneae,Uloboridae). J Arachnol 11:369–376Google Scholar
  140. Opell BD, Hendricks ML (2010) The role of granules within viscous capture threads of orb-weaving spiders. J Exp Biol 213:339–346PubMedCrossRefGoogle Scholar
  141. Opell BD, Schwend HS (2007) The effect of insect surface features on the adhesion of viscous capture threads spun by orb-weaving spiders. J Exp Biol 210:2352–2360PubMedCrossRefGoogle Scholar
  142. Osaki S (1996) Spider silk as a mechanical lifeline. Nature 384:419CrossRefGoogle Scholar
  143. Peng P, Blamires SJ, Agnarsson I, Lin HC, Tso IM (2013) A colour-mediated mutualism between two arthropod predators. Curr Biol 23:172–176PubMedCrossRefGoogle Scholar
  144. Perry DJ, Bittencourt D, Liberels-Stilberg J, Rech EL, Lewis RV (2010) Pyriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11:3000–3006PubMedPubMedCentralCrossRefGoogle Scholar
  145. Peters HM (1938) Ober das Netz der Dreieckspinne, Hyptiotes paradoxus. Zool Anz 121:49–59Google Scholar
  146. Peters HW (1987) Fine structure and function of capture threads. In: Nentwig W (ed) Ecophysiology of spiders. Springer-Verlag, Berlin, pp 187–202CrossRefGoogle Scholar
  147. Piacentini L (2011) Three new species and new records in the wolf spider subfamily Sosippinae from Argentina (Araneae: Lycosidae). Zootaxa 3018:27–49Google Scholar
  148. Pickard-Cambridge FO (1904) Arachnida — Araneida and Opiliones. In: Biologia Centralia-Americana. Zoology, London, pp 465–560Google Scholar
  149. Piorkowski D, Blackledge TA (2017) Punctuated evolution of viscid silk in orb web spiders supported by mechanical behavior of wet cribellate silk. Sci Nat 6: doi: 10.1007/s00114-017-1489-x
  150. Prosdocimi F, Bittencourt D, Rodrigues da Silva F, Kirst M, Motta PC, Rech EL (2011) Spinning gland transcriptomics from two main clades of spiders (order: Araneae) — insights on their molecular, anatomical and behavioral evolution. PLoS One 6:e21634PubMedPubMedCentralCrossRefGoogle Scholar
  151. Pulido FJI (2002) Manejo de la araña del Mediterraneo o araña parda enredadora. Instituto Colombiano Agropecuario report. 5pGoogle Scholar
  152. Rito KF, Hanashiro FTT, Peixoto EC, Gonzaga MO (2016) Optimal foraging or predator avoidance?: why does the Amazon spider Hingstepeira foliscens (Araneae: Araneidae) adopt alternative foraging behaviors? Zoologia 33, e20150147CrossRefGoogle Scholar
  153. Sahni V, Blackledge TA, Dhinojwala A (2011) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1:41PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sahni V, Dhinojwala A, Opell BD, Blackledge TA (2014a) Prey capture adhesives produced by orb-weaving spiders. In: Asakura T, Miller T (eds) Biotechnology of silk. Springer, Dordrecht, pp 203–217CrossRefGoogle Scholar
  155. Sahni V, Miyoshi T, Chen K, Jain D, Blamires SJ, Blackledge TA, Dhinojwala A (2014b) Direct solvation of glycoproteins by salts in spider silk glues increases adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15:1225–1232PubMedCrossRefGoogle Scholar
  156. Salomon M (2007) Western black widow spiders express state-dependent web-building strategies tailored to the presence of neighbours. Anim Behav 73:865–875CrossRefGoogle Scholar
  157. Salomon M, Sponarski C, Larocque A, Aviles L (2010) Social organization of the colonial spider Leucauge sp in the Neotropics: vertical stratification within colonies. J Arachnol 38:446–451CrossRefGoogle Scholar
  158. Sandoval CP (1994) Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Funct Ecol 8:701–707CrossRefGoogle Scholar
  159. Santos AJ (2007) A revision of the Neotropical nursery-web spider genus Architis (Araneae: Pisauridae). Zootaxa 1578:1–40Google Scholar
  160. Santos AJ, Brescovit AD (2001) A revision of the South American spider genus Aglaoctenus Tullgren, 1905 (Araneae, Lycosidae, Sosippinae). Andrias 15:75–90Google Scholar
  161. Santos AJ, Gonzaga MO (2017) Systematics and natural history of Uaitemuri, a new genus of the orb-weaving spider family Uloboridae (Araneae: Deinopoidea) from south-eastern Brazil. Zool J Linnean Soc 180:155–174Google Scholar
  162. Sensenig A, Lorentz KA, Kelly SP, Blackledge TA (2012) Spider orb webs rely on radial threads to absorb prey kinetic energy. J R Soc Interface 9:1880–1891PubMedPubMedCentralCrossRefGoogle Scholar
  163. Silva ELC, Lise A, Carico JE (2008) Revision of the Neotropical spider genus Enna (Araneae, Lycosoidea, Trechaleidae). J Arachnol 36:76–110CrossRefGoogle Scholar
  164. Souza HS, Messas YF, Gonzaga MO, Vasconcellos-Neto J (2015) Substrate selection and spatial segregation by two congeneric species of Eustala (Araneae: Araneidae) in southeastern Brazil. J Arachnol 43:59–66CrossRefGoogle Scholar
  165. Stefani V, Del-Claro K (2015) The effects of forest fragmentation on the population ecology and natural history of a funnel-web spider. J Nat Hist 49:211–223CrossRefGoogle Scholar
  166. Stefani V, Del-Claro K, Silva LA, Guimarães B, Tizo-Pedroso E (2001) Mating behaviour and maternal care in the tropical savanna funnel-web spider Aglaoctenus lagotis Holmberg (Araneae: Lycosidae). J Nat Hist 45:1119–1129CrossRefGoogle Scholar
  167. Stowe MK (1978) Observations of two nocturnal orbweavers that build specialized webs: Scoloderus cordatus and Wixia ectypa (Araneae: Araneidae). J Arachnol 6:141–146Google Scholar
  168. Su YC, Smith D (2014) Evolution of host use, group-living and foraging behaviours in kleptoparasitic spiders: molecular phylogeny of the Argyrodinae (Araneae : Theridiidae). Invertebr Syst 28:415–431Google Scholar
  169. Tian M, Lewis RV (2005) Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein. Biochemistry 44:8006–8012PubMedCrossRefGoogle Scholar
  170. Townley MA, Tillinghast EK (2013) Aggregate silk gland secretions of Araneoid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 283–302CrossRefGoogle Scholar
  171. Townley MA, Tillinghast EK, Neefus CD (2006) Changes in composition of spider orb web sticky droplets with starvation and web removal and synthesis of sticky droplet compounds. J Exp Biol 209:1463–1486PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tso IM, Liao CP, Huang RP, Yang EC (2006) Function of being colorful in web spiders: attracting prey or camouflaging oneself? Behav Ecol 17:606–613CrossRefGoogle Scholar
  173. Tso IM, Chiang SY, Blackledge TA (2007) Does the giant wood spider Nephila pilipes respond to prey variation by altering web or silk properties? Ethology 113:324–333CrossRefGoogle Scholar
  174. Turnbull AL (1973) Ecology of the true spiders (Araneomorphae). Annu Rev Entomol 18:305–348CrossRefGoogle Scholar
  175. Uetz GW (1989) The ‘ricochet effect’ and prey capture in colonial spiders. Oecologia 81:154–159PubMedCrossRefGoogle Scholar
  176. Vasconcellos-Neto J, Lewinsohn TM (1984) Discrimination and release of unpalatable butterflies by Nephila clavipes, a Neotropical orb-weaving spider. Ecol Entomol 9:337–344CrossRefGoogle Scholar
  177. Vollrath F (1979) Behaviour of the kleptoparasitic spider Argyrodes elevatus (Araneae, theridiidae). Anim Behav 27:515–521CrossRefGoogle Scholar
  178. Vollrath F (1994) General properties of some spider silks. In: Kapaln DL, Adams WW, Farmer B, Viney C (eds) Silk polymers: materials science and biotechnology. American Chemical Society, Washington, D.C, pp 17–28Google Scholar
  179. Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548PubMedCrossRefGoogle Scholar
  180. Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528CrossRefGoogle Scholar
  181. Whitehouse MEA, Lubin YD (2005) The functions of societies and the evolution of group living: spider societies as a test case. Biol Rev 80:347–361CrossRefGoogle Scholar
  182. Wiehle H (1927) Beitrage zur Kenntnis Uloboriden. Z Morph Okol Tiere 8:468–537CrossRefGoogle Scholar
  183. Wolff JO, Grawe I, Writh M, Karstedt A, Gorb SN (2015) Spider’s super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 11:2394–2403PubMedCrossRefGoogle Scholar
  184. World Spider Catalog (2016) Natural History Museum Bern, version 16.5. Available from http://research.amnh.org/entomology/spiders/catalog/index. Accessed 28 Mar 2017
  185. Xavier GM, Moura RR, Gonzaga MO (2017) Orb web architecture of Wixia abdominalis O. Pickard-Cambridge, 1882 (Araneae: Araneidae): intra-orb variation of web components. J Arachnol (in press) 45: 160–165Google Scholar
  186. Yip EC, Powers KS, Aviles L (2008) Cooperative capture of large prey solved scaling challenge faced by spider societies. Proc Natl Acad Sci USA 105:11818–11822PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zaera R, Solar A, Teus J (2014) Uncovering changes in spider orb-web topology owing to aerodynamic effects. J R Soc Interface 11:20140484PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zevenbergen JM, Schneider NK, Blackledge TA (2008) Fine dining or fortress? Functional shifts in spider web architecture by the western black widow Latrodectus hesperus. Anim Behav 76:823–829CrossRefGoogle Scholar
  189. Zhou H, Zhang Y (2005) Hierarchical chain model of spider capture silk elasticity. Phys Rev Lett 94:028104PubMedCrossRefGoogle Scholar
  190. Zschokke S, Vollrath F (1995) Web construction patterns in a range of orb-weaving spiders (Araneae). Eur J Entomol 92:523–541Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Evolution & Ecology Research Centre, School of Biological, Earth & Environmental SciencesThe University of New South WalesSydneyAustralia
  2. 2.Department of Life ScienceTunghai UniversityTaichungTaiwan
  3. 3.Center for Tropical Ecology & BiodiversityTunghai UniversityTaichungTaiwan

Personalised recommendations