Advertisement

Trophic Niches and Trophic Adaptations of Prey-Specialized Spiders from the Neotropics: A Guide

  • Stano Pekár
  • Luis Fernando García
  • Carmen Viera
Chapter

Abstract

Spiders are the most diversified group of terrestrial predators. They employ a wide variety of feeding strategies, and exploit several prey types, from invertebrates up to small vertebrates. Many studies on the trophic ecology of spiders have focused on generalist and euryphagous species. Thus, our knowledge of prey specialist (and stenophagous) species is very limited despite the high number of endemic species occurring in the Neotropics, many of which are most probably specialized. In this chapter, we provide a guide on how to study the trophic niches of spiders in order to encourage other researchers to investigate prey-specialized species. At the beginning, we define the term trophic niche and identify its dimensions (prey type, size, and availability). We critically outline methodological approaches on how to study it. A narrow trophic niche is paralleled by the evolution of specific cognitive, behavioural, metabolic, morphological, and venomic adaptations used in prey capture. We provide an overview of these adaptations and focus on approaches to reveal them. On the basis of an extensive bibliographic review, we summarize the current state-of-the-art with respect to knowledge on the trophic ecology of Neotropical spiders, with particular emphasis on specialists. Finally, we provide recommendations for future research.

Notes

Acknowledgments

We thank L. Petráková and to anonymous reviewers for comments on the manuscript; also thanks to David Hill, Steven Marshall, Alvaro Laborda, and Ondřej Michálek, who kindly provided nice photos of spiders. SP was supported by the Czech Science Foundation (grant no. GA15-14762S). LFG was supported by Doctoral grant 8880 from the Uruguayan National Agency for Research and Innovation (ANII) and PEDECIBA (Postgraduare Programm).

References

  1. Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz). Ecology 55:576–585CrossRefGoogle Scholar
  2. Bartos M (2011) Partial dietary separation between coexisting cohorts of Yllenus arenarius (Araneae: Salticidae). J Arachnol 39:230–235CrossRefGoogle Scholar
  3. Bearhop S, Adams CE, Waldron S, Fueller RA, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  4. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Oxford, Blackwell PublishingGoogle Scholar
  5. Blackledge TA (2011) Prey capture in orb weaving spiders: are we using the best metric? J Arachnol 39:205–210CrossRefGoogle Scholar
  6. Bristowe WS (1939) The comity of spiders I. Ray Society, LondonGoogle Scholar
  7. Cangialosi KR (1990) Life cycle and behaviour of the kleptoparasitic spider Argyrodes ululans (Araneae, Theridiidae). J Arachnol 18:347–358Google Scholar
  8. Cangialosi KR (1997) Foraging versatility and the influence of host availability in Argyrodes trigonum (Araneae, Theridiidae). J Arachnol 25:182–193Google Scholar
  9. Cárdenas M, Jiroš P, Pekár S (2012) Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften 99:1–9CrossRefGoogle Scholar
  10. Castanho LM, Oliveira PS (1997) Biology and behaviour of the Neotropical ant-mimicking spider Aphantochilus rogersi (Araneae: Aphantochilidae): nesting, maternal care and ontogeny of ant-hunting techniques. J Zool 242:643–650CrossRefGoogle Scholar
  11. Caswell H (2001) Matrix population models: construction, analysis and interpretation, 2nd edn. Massachusetts, Sinauer AssociatesGoogle Scholar
  12. Chapman EG, Romero SA, Harwood JD (2010) Maximizing collection and minimizing risk: does vacuum suction sampling increase the likelihood for misinterpretation of food web connections? Mol Ecol Resour 10:1023–1033PubMedCrossRefGoogle Scholar
  13. Chapman EG, Schmidt JM, Welch KD, Harwood JD (2013) Molecular evidence for dietary selectivity and pest suppression potential in an epigeal spider community in winter wheat. Biol Control 65:72–86CrossRefGoogle Scholar
  14. Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592CrossRefGoogle Scholar
  15. Cutler B (1980) Ant predation by Habrocestum pulex Hentz (Araneae: Salticidae). Zool Anz 204:97–101Google Scholar
  16. Diguet L (1909) Le mosquero nid d'araignée employé dans certaines régions du Mexique comme piége a mouches. Bull Soc Natl Acclim France 56:368–337CrossRefGoogle Scholar
  17. Drees von O (1952) Untersuchungen uber die angeborenen Verhaltensweisen bei Springspinnen (Salticidae). Z Tierpsychol 9:169–207Google Scholar
  18. Eberhard WG (1977) Aggressive chemical mimicry by a bolas spider. Science 198:1173–1175PubMedCrossRefGoogle Scholar
  19. Eberhard WG (1980) The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87:143–169CrossRefGoogle Scholar
  20. Eberhard WG (1981a) Notes on the natural history of Tazanowskia sp. (Araneae: Araneidae). Bull Br Arachnol Soc 5:175–176Google Scholar
  21. Eberhard WG (1981b) The single line web of Phoronocidia studo Levi (Araneae, Theridiidae) — a prey attractant? J Arachnol 9:229–232Google Scholar
  22. Eberhard WG (1991) Chrosiothes tonala (Araneae, Theridiidae): a web-building spider specializing on termites. Psyche 98(1):7–19CrossRefGoogle Scholar
  23. Edwards GB, Jackson RR (1994) The role of experience in the development of predatory behaviour in Phidippus regius, a jumping spider (Araneae, Salticidae) from Florida. N Z J Zool 21:269–277CrossRefGoogle Scholar
  24. Edwards GB, Carroll JF, Whitcomb WH (1974) Stoidis aurata (Araneae: Salticidae) a spider predator of ants. Fla Entomol 57:337–345CrossRefGoogle Scholar
  25. Erthal M, Tonhasca A (2001) Attacobius attarum spiders (Corinnidae): myrmecophilous predators of immature forms of the leaf-cutting ant Atta sexdens (Formicidae). Biotropica 33:374–376Google Scholar
  26. Escalante I, Aisenberg A, Costa FG (2015) Risky behaviors by the host could favor araneophagy of the spitting spider Scytodes globula on the hacklemesh weaver Metaltella simoni. J Ethol 33:125–136CrossRefGoogle Scholar
  27. Fischer ML, Vasconocellos-Neto J, dos Santos Neto LG (2006) The prey and predators of Loxosceles intermedia Mello-Leitao 1934 (Araneae, Sicariidae). J Arachnol 34:485–488CrossRefGoogle Scholar
  28. Fowler HG (1984) Note on a clubionid spider associated with attine ants. J Arachnol 12:117Google Scholar
  29. Framenau VW, Finley LA, Allan K, Love M, Shirley D, Elgar MA (2000) Multiple feeding in wolf spiders: the effect of starvation on handling time, ingestion rate, and intercatch intervals in Lycosa lapidosa (Araneae: Lycosidae). Aust J Zool 48:59–65CrossRefGoogle Scholar
  30. Garb JE (2014) Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J Vis Exp 93:e51618Google Scholar
  31. García LF, Lacava M, Viera C (2014) Diet composition and prey selectivity by the spider Oecobius concinnus (Araneae: Oecobiidae) from Colombia. J Arachnol 42:199–201CrossRefGoogle Scholar
  32. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455PubMedPubMedCentralCrossRefGoogle Scholar
  33. Goloboff PA (2000) The family Gallieniellidae (Araneae, Gnaphosidae) in the Americas. J Arachnol 28:1–6CrossRefGoogle Scholar
  34. Gonzaga MO (2007) Araneofagia e cleptoparasitismo. In: Gonzaga MO, Santos AJ, Japyassú HF (eds) Ecologia e Comportamento de Aranhas. Interciência, Rio de Janeiro, pp 239–255Google Scholar
  35. Gonzaga MO, dos Santos AJ, Dutra GF (1998) Web invasion and araneophagy in Peucetia tranquillini (Araneae, Oxyopidae). J Arachnol 26:249–250Google Scholar
  36. Greenstone MH (1999) Spider predation: how and why we study it. J Arachnol 27:333–342Google Scholar
  37. Haddad CR, Brabec M, Pekár S, Fourie R (2016) Seasonal population dynamics of a specialized termite-eating spider (Araneae: Ammoxenidae) and its prey (Isoptera: Hodotermitidae). Pedobiologia 59:105–110CrossRefGoogle Scholar
  38. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hood-Nowotny R, Knols BGJ (2007) Stable isotope methods in biological and ecological studies of arthropods. Entomol Exp Appl 124:3–16CrossRefGoogle Scholar
  40. Huseynov EFO (2014) Natural prey of the crab spider Xysticus marmoratus (Araneae: Thomisidae) on Eryngium plants. J Arachnol 42:130–132CrossRefGoogle Scholar
  41. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  42. Jackson RR, van Olphen A (1991) Prey-capture techniques and prey preferences of Corythalia canosa and Pystira orbiculata, ant-eating jumping spiders (Araneae: Salticidae). J Zool 223:577–591CrossRefGoogle Scholar
  43. Jocqué R (1988) An updating of the genus Leprolochus (Araneae: Zodariidae). Stud Neotropical Fauna Environ 23:77–87CrossRefGoogle Scholar
  44. Japyassú HF, Viera C (2002) Predatory plasticity in Nephilengys cruentata (Araneae: Tetragnathidae): relevance for phylogeny reconstruction. Behaviour 139(4):529–544CrossRefGoogle Scholar
  45. King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963PubMedCrossRefGoogle Scholar
  46. Korenko S, Hamouzová K, Pekár S (2014) Trophic niche and predatory behaviour of the goblin spider Triaeris stenaspis (Oonopidae): springtail specialist? J Arachnol 42:74–78CrossRefGoogle Scholar
  47. Kuusk AK, Agustí N (2008) Group-specific primers for DNA-based detection of springtails (Hexapoda: Collembola) within predator gut contents. Mol Ecol Resour 8:678–681PubMedCrossRefGoogle Scholar
  48. Lehner PN (1999) Handbook of ethological methods, 2nd edn. Cambridge, Cambridge University PressGoogle Scholar
  49. Lesar DE, Unzicker JD (1978) Life history, habits and prey preferences of Tetragnatha laboriosa (Araneae: Tetreagnathidae). Environm Entomol 7(6):879–884CrossRefGoogle Scholar
  50. Liu J, May-Collado LJ, Pekár S, Agnarsson I (2016) A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): a predatory cretaceous lineage diversifying in the era of the ants (hymenoptera, Formicidae). Mol Phylogenet Evol 94:658–675PubMedCrossRefGoogle Scholar
  51. Liznarová E, Pekár S (2015) Trophic niche of Oecobius maculatus (Araneae: Oecobiidae): evidence based on natural diet, prey capture success, and prey handling. J Arachnol 43:88–193CrossRefGoogle Scholar
  52. Líznarová E, Sentenská L, García LF, Pekár S, Viera C (2013) Local trophic specialisation in a cosmopolitan spider (Araneae). Zoology 116:20–26PubMedCrossRefGoogle Scholar
  53. Lubin YD (1983) An ant-eating crab spider from the Galapagos. Not Galapagos 37:18–19Google Scholar
  54. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. New York, Kluwer Academic PublishersGoogle Scholar
  55. Marshall SD, Gittleman JL (1994) Clutch size in spiders: is more better? Funct Ecol 8:118–124CrossRefGoogle Scholar
  56. Marshall SA, Borkent A, Agnarsson I, Otis GW, Fraser L, d’Entremont D (2015) New on a Neotropical termite-hunting theridiid spider: opportunistic nest raiding, prey storage, and ceratopogonid kleptoparasites. J Arachnol 43:419–421CrossRefGoogle Scholar
  57. Maupin JL, Riechert SE (2001) Superfluous killing in spiders: a consequence of adaptation to food-limited environments? Behav Ecol 12(5):569–576CrossRefGoogle Scholar
  58. Mayntz D, Raubenheimer D, Salomon M, Toft S, Simpson SJ (2005) Nutrient-specific foraging in invertebrate predators. Science 307:111–113PubMedCrossRefGoogle Scholar
  59. McNabb DM, Halaj J, Wise DH (2001) Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia 45:289–297CrossRefGoogle Scholar
  60. Mestre L, Piňol J, Barrientos JA, Espalader X, Brewitt K, Werner C, Planter C (2013) Trophic structure of the spider community of a Mediterranean citrus grove: a stable isotope analysis. Basic Appl Ecol 14:413–422CrossRefGoogle Scholar
  61. Miller J, Griswold C, Scharff N, Řezáč M, Szuts T, Marhabaie M (2012) The velvet spiders: an atlas of the Eresidae (Arachnida, Araneae). ZooKeys 195:1–144CrossRefGoogle Scholar
  62. Moreno-Mendoza SD, Nunez-Ibarra G, Chame-Vazquez ER, Valle-Mora FJ (2012) Gama de presas capturadas por cuatro especies de aranas tejedoras (Arachnida: Araneae) en un agroecosistema de cacao en Chipas, Mexico. Trop Subtrop Agroecosyst 15:457–469Google Scholar
  63. Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782:1–110PubMedCrossRefGoogle Scholar
  64. Nelson XJ, Jackson RR (2011) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 31–56CrossRefGoogle Scholar
  65. Nentwig W (1985) Prey analysis of four species of tropical orb-weaving spiders (Araneae: Araneidae) and a comparison with araneids of the temperate zone. Oecologia 66:580–594PubMedCrossRefGoogle Scholar
  66. Nyffeler M, Knörnschild M (2013) Bat predation by spiders. PLoS One 8:e58120PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nyffeler M, Pusey BJ (2014) Fish predation by semi-aquatic spiders: a global pattern. PLoS One 9:e99459PubMedPubMedCentralCrossRefGoogle Scholar
  68. Oliveira PS (1987) Ant-mimicry in some spiders from Brazil. Bull Soc Zool France 111:297–311Google Scholar
  69. Oliveira PS, Sazima I (1984) The adaptative bases of ant-mimicry in a Neotropical aphantochilid spider (Aphantochilidae). Biol J Linn Soc 22:145–155CrossRefGoogle Scholar
  70. Oliveira PS, Sazima I (1985) Ant-hunting behaviour in spiders with emphasis on Strophius nigricans (Thomisidae). Bull Br Arachnol Soc 6:309–312Google Scholar
  71. Palagi A, Koh JMS, Leblanc M, Wilson D, Dutertre S, King GF, Nicholson GM, Escoubas P (2013) Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC–MALDI–TOF mass spectrometry. J Proteome 80:292–310CrossRefGoogle Scholar
  72. Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–41CrossRefGoogle Scholar
  73. Pekár S, Cárdenas M (2015) Innate prey preference overridden by familiarisation with detrimental prey in a specialised myrmecophagous predator. Sci Nat 102(1–2):1257Google Scholar
  74. Pekár S, Toft S (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev 90:744–761PubMedCrossRefGoogle Scholar
  75. Pekár S, Král J, Lubin YD (2005) Natural history and karyotype of some ant-eating zodariid spiders (Araneae, Zodariidae) from Israel. J Arachnol 33:50–62CrossRefGoogle Scholar
  76. Pekár S, Toft S, Hrušková M, Mayntz D (2008) Dietary and prey-capture adaptations by which Zodarion germanicum, an ant-eating spider (Araneae: Zodariidae), specialises on the Formicinae. Naturwissenschaften 95:233–239PubMedCrossRefGoogle Scholar
  77. Pekár S, Mayntz D, Ribeiro T, Herberstein ME (2010) Specialist ant-eating spiders selectively feed on different body parts to balance nutrient intake. Anim Behav 79:1301–1306CrossRefGoogle Scholar
  78. Pekár S, Coddington JA, Blackledge T (2012) Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution 66:776–806PubMedCrossRefGoogle Scholar
  79. Pekár S, Šedo O, Líznarová E, Korenko S, Zdráhal Z (2014) David and the Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften 101:533–540PubMedCrossRefGoogle Scholar
  80. Pérez de la Cruz MS, Sanchez Soto M, Ortiz García CF, Zapata Mata R, Pérez de la Cruz A (2007) Diversity of insects captured by weaver spiders (Arachnida: Araneae) in the cocoa agroecosystem in Tabasco, Mexico. Neotrop Entomol 36:90–101PubMedCrossRefGoogle Scholar
  81. Petráková L, Líznarová E, Sentenská L, Haddad CR, Pekár S, Symondson WOC (2015) Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci Rep 5:14013PubMedPubMedCentralCrossRefGoogle Scholar
  82. Piñol J, San Andrés V, Clare EL, Mir G, Symondson WOC (2014) A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes. Mol Ecol Resour 14(1):18–26PubMedCrossRefGoogle Scholar
  83. Pollard SD, Beck MW, Dodson GN (1995) Why do male crab spiders drink nectar? Anim Behav 49:1443–1448CrossRefGoogle Scholar
  84. Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2011) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950PubMedCrossRefGoogle Scholar
  85. Pompozzi G, Ferretti N, Schwerdt L, Copperi S, Ferrero A, Simó M (2013) The diet of the black widow spider Latrodectus mirabilis (Theridiidae) in two cereal crops of central Argentina. Iheringia – Ser Zool 103:388–392CrossRefGoogle Scholar
  86. Putnam WL (1967) Prevalence of spiders and their importance as predators in Ontario peach orchards. Can Entomol 99:160–170CrossRefGoogle Scholar
  87. Řezáč M, Pekár S, Lubin Y (2008) How oniscophagous spiders overcome woodlouse armour. J Zool 275:64–71CrossRefGoogle Scholar
  88. Romero-Ortiz C, Flórez-Daza E (2014) Un caso de araneofagia de Mimetus sp. (Araneae, Mimetidae), sobre Leucauge sp. (Araneae, Tetragnathidae) en el nororiente de Colombia. Rev Iberica Aracnol 24:102–103Google Scholar
  89. Rossi MN, Reigada C, Godoy WAC (2006) The effect of hunger level on predation dynamics in the spider Nesticodes rufipes: a functional response study. Ecol Res 21:617–623CrossRefGoogle Scholar
  90. Salomon M (2011) The natural diet of a polyphagous predator, Latrodectus hesperus (Araneae: Theridiidae), over one year. J Arachnol 39:154–160CrossRefGoogle Scholar
  91. Sint D, Raso L, Traugott M (2012) Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol 3:898–905PubMedPubMedCentralCrossRefGoogle Scholar
  92. Smith EP (1982) Niche breadth, resource availability, and inference. Ecology 63:1675–1681CrossRefGoogle Scholar
  93. Smithers P (2005) The diet of the cave spider Meta menardi (Latreille 1804) (Araneae, Tetragnathidae). J Arachnol 33:243–246CrossRefGoogle Scholar
  94. Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inform 2:1–10CrossRefGoogle Scholar
  95. Southwood TRE, Henderson PA (2000) Ecological methods. Blackwell Science, OxfordGoogle Scholar
  96. Stowe MK (1978) Observations of two nocturnal orbweavers that build specialized webs: Scoloderus cordatus and Wixia ectypa. J Arachnol 6:141–146Google Scholar
  97. Stowe MK (1986) Prey specialization in the Araneidae. In: Shear WA (ed) Spiders, webs, behavior, and evolution. Stanford University Press, Stanford, pp 101–131Google Scholar
  98. Stowe MK (1988) Chemical mimicry. In: Spencer KC (ed) Chemical mediation of coevolution. Academic Press, San Diego, pp 513–580CrossRefGoogle Scholar
  99. Sunderland KD (1988) Quantitative methods for detecting invertebrate predation occurring in the field. Ann Appl Biol 112:201–224CrossRefGoogle Scholar
  100. Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641PubMedCrossRefGoogle Scholar
  101. Teruel R, Sánchez-Ruiz A (2000) Nota sobre la depredación de un escorpión (Scorpiones: Buthidae) por una araña (Araneae: Caponiidae). Biodivers Cuba Orient 4:82–83Google Scholar
  102. Tietjen WJ, Ayyagari LR, Uetz GW (1987) Symbiosis between social spiders and yeast: the role in prey attraction. Psyche 94:151–115CrossRefGoogle Scholar
  103. Toft S (1999) Prey choice and spider fitness. J Arachnol 27:301–307Google Scholar
  104. Toft S, Li D, Mayntz D (2010) A specialized araneophagic predator’s short-term nutrient utilization depends on the macronutrient content of prey rather than on prey taxonomic affiliation. Physiol Entomol 35:317–327CrossRefGoogle Scholar
  105. Wiehle H (1953) Spinnentiere oder Arachnoidea (Araneae) IX: Orthognatha — Cribellatae — Haplogynae — Entelegynae (Pholcidae, Zodariidae, Oxyopidae, Mimetidae, Nesticidae). In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise 42. Teil. Gustav Fischer, JenaGoogle Scholar
  106. Wilder SM (2011) Spider nutrition: an integrative perspective. Adv Insect Phys 40:87–136CrossRefGoogle Scholar
  107. Wirta HK, Vesterinen EJ, Hambäck PA, Weingartner E, Rasmussen C, Reneerkens J, Schmidt NM, Gilg O, Roslin T (2015) Exposing the structure of an Arctic food web. Ecol Evol 5:3842–3856PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wullschleger B, Nentwig W (2002) Influence of venom availability on a spider’s prey-choice behaviour. Funct Ecol 16:802–807CrossRefGoogle Scholar
  109. Xu CC, Yen IJ, Bowman D, Turner CR (2015) Spider web DNA: a new spin on noninvasive genetics of predator and prey. PLoS One 10:e0142503PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2088PubMedCrossRefGoogle Scholar

Additional References

  1. Aisenberg A, González M, Laborda A, Postiglioni R, Simó M (2009) Reversed cannibalism, foraging, and surface activities of Allocosa alticeps and Allocosa brasiliensis: two wolf spiders from coastal sand dunes. J Arachnol 37:135–138CrossRefGoogle Scholar
  2. Arango AM, López-Portillo J, Parra-Tabla V, Hernández-Salazar LT, Morales-Mávil JE, Rico-Gray V (2012) Effect of the spider Peucetia viridans (Oxyopidae) on floral visitors and seed set of Cnidoscolus multilobus (Euphorbiaceae). Acta Bot Mex 100:1–14CrossRefGoogle Scholar
  3. Barrantes G, Weng JL (2007) Natural history, courtship, feeding behaviour and parasites of Theridion evexum (Araneae: Theridiidae). Bull Br Arachnol Soc 14:61–65CrossRefGoogle Scholar
  4. Bilsing WS (1920) Quantitative studies in the food of spiders. Ohio J Sci 20:215–260Google Scholar
  5. Blackledge T, Wenzel J (1999) Do stabilimenta in orb webs attract prey or defend spiders? Behav Ecol 10:372–376CrossRefGoogle Scholar
  6. Calixto A, Levi HW (2006) Notes on the natural history of Aspidolasius brancki (Araneae: Araneidae) at Tinigua National Park, Colombia, with revision of the genus. Bull Br Arachnol Soc 13:314–230Google Scholar
  7. Ceballos L, Hénaut Y, Legal L (2005) Foraging strategies of Eriophora edax (Araneae, Araneidae): a nocturnal orb-weaving spider. J Arachnol 33:509–515CrossRefGoogle Scholar
  8. Cheli G, Armendano A, González A (2006) Preferencia alimentaria de arañas Misumenops pallidus (Araneae: Thomisidae) sobre potenciales insectos presa de cultivos de alfalfa. Rev Biol Trop 54:505–513PubMedCrossRefGoogle Scholar
  9. Culin JD, Yeargan KV (1982) Feeding behavior and prey of Neoscona arabesca (Araneae: Araneidae) and Tetragnatha laboriosa (Araneae: Tetragnathidae) in soybean fields. Entomophaga 27:417–424CrossRefGoogle Scholar
  10. Dean DA, Sterling WL, Nyffeler M, Breene RG (1987) Foraging by selected spider predators on the cotton fleahopper and other prey. Southwest Entomol 12:263–270Google Scholar
  11. Eberhard WG (1979) Argyrodes attenuatus (Theridiidae): a web that is not a snare. Psyche 86:407–413CrossRefGoogle Scholar
  12. Edwards R, Edwards A (2000) Observations on the webs and life history of Homalometa nigritarsis (Araneae: Tetragnathidae): a spider that lays its eggs in rows. Psyche 103:37–48CrossRefGoogle Scholar
  13. Flórez E, Pinzon J, Sabogal A, Barreto N (2004) Selección de presas y composicion de la dieta de la araña Alpaida variabilis (Araneae: Araneidae) en pastizales de la sabana de Bogota, Colombia. RIA 9:241–248Google Scholar
  14. Fowler HG, Diehl J (1978) Biology of Paraguayan colonial orb-weaver Eriophora bistriata (Rengger) (Araneae, Araneidae). Bull Br Arachnol Soc 4:241–250Google Scholar
  15. Fowler HG, Gobbi N (1988) Cooperative prey capture by an orb-web spider. Naturwissenschaften 75:208–209CrossRefGoogle Scholar
  16. Gonzaga MO, Leiner NO, Santos AJ (2006) On the sticky cobwebs of two theridiid spiders (Araneae: Theridiidae). J Nat Hist 40:293–306CrossRefGoogle Scholar
  17. González A, Liljesthrom G, Minervino E, Castro D, Gonzalez S, Armendano A (2009) Predation by Misumenops pallidus (Araneae: Thomisidae) on insect pests of soybean cultures in Buenos Aires Province, Argentina. J Arachnol 37:282–286CrossRefGoogle Scholar
  18. Gregory BM (1989) Field observations of Gasteracantha cancriformis (Araneae, Araneidae) in a Florida mangrove stand. J Arachnol 17:119–120Google Scholar
  19. Guevara J, Avilés L (2009) Elevational changes in the composition of insects and other terrestrial arthropods at tropical latitudes: a comparison of multiple sampling methods and social spider diets. Insect Conserv Divers 2:142–152CrossRefGoogle Scholar
  20. Hénaut Y, García-Ballinas JA, Alauzet C (2006) Variations in web construction in Leucage venusta (Araneae, Tetragnathidae). J Arachnol 34:234–224CrossRefGoogle Scholar
  21. Ibarra-Núnez G, García JA, López JAL, Lachaud JP (2001) Prey analysis in the diet of some Ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology 37:723–755Google Scholar
  22. Jackson RR (1989) The biology of Cobanus mandibularis, a jumping spider (Araneae: Salticidae) from Costa Rica: intraspecific interactions, predatory behaviour, and silk utilisation. N Z J Zool 16:383–392CrossRefGoogle Scholar
  23. Lourenco WR (1978) Notas sobre a biologia de Acanthoscurria atrox Vellard, 1924 (Araneae, Theraphosidae). Rev Bras Biol 38:161–164Google Scholar
  24. Lubin YD (1974) Adaptive advantages and the evolution of colony formation in Cyrthophora (Araneae: Araneidae). Zool J Linn Soc 54:321–339CrossRefGoogle Scholar
  25. Lubin YD, Eberhard WG, Montgomery GG (1978) Webs of Miagrammopes (Araneae: Uloboridae) in the Neotropics. Psyche 85:1–23CrossRefGoogle Scholar
  26. Meehan CJ, Olson EJ, Reudink MW, Kyser TK, Curry RL (2009) Herbivory in a spider through exploitation of an ant–plant mutualism. Curr Biol 19:R892–R893PubMedCrossRefGoogle Scholar
  27. Nentwig W (1983) The prey of web-building spiders compared with feeding experiments (Araneae: Araneidae, Linyphiidae, Pholcidae, Agelenidae). Oecologia 56:132–139PubMedCrossRefGoogle Scholar
  28. Nentwig W (1986) Non-web-building spiders: prey specialists or generalists? Oecologia 69:571–576PubMedCrossRefGoogle Scholar
  29. Nentwig W (1990) Stick insects (Phasmida) as prey of spiders. Size, palatability and defence mechanisms in feeding tests. Oecologia 82:446–450PubMedCrossRefGoogle Scholar
  30. Nentwig W, Christenson TC (1986) Natural history of the non-solitary sheetweaving spider Anelosimus jucundus (Araneae: Theridiidae). Zool J Linn Soc 87:27–35CrossRefGoogle Scholar
  31. Nyffeler M, Sterling WL (1994) Comparison of the feeding niche of polyphagous insectivores (Araneae) in a Texas cotton plantation: estimates of niche breadth and overlap. Environ Entomol 23:1294–1303CrossRefGoogle Scholar
  32. Nyffeler M, Dean DA, Sterling WL (1986) Feeding habits of the spiders Cyclosa turbinata (Walckenaer) and Lycosa rabida Walckenaer. Southwest Entomol 11:195–201Google Scholar
  33. Nyffeler M, Dean DA, Sterling WL (1987) Feeding ecology of the orb-weaving spider Argiope aurantia (Araneae, Araneidae) in a cotton agroecosystem. Entomophaga 32:367–376CrossRefGoogle Scholar
  34. Nyffeler M, Dean DA, Sterling WL (1988) Prey records of the web-building spiders Dictyna segregata (Dictynidae), Theridion australe (Theridiidae), Tidarren haemorrhoidale (Theridiidae), and Frontinella pyramitela (Linyphiidae) in a cotton agroecosystem. Southwest Nat 33:215–218CrossRefGoogle Scholar
  35. Nyffeler M, Dean DA, Sterling WL (1989) Prey selection and predatory importance of orb-weaving spiders (Araneae: Araneidae, Uloboridae) in Texas cotton. Environ Entomol 18:373–380CrossRefGoogle Scholar
  36. Nyffeler M, Dean DA, Sterling WL (1992) Diets, feeding specialization, and predatory role of two lynx spiders, Oxyopes salticus and Peucetia viridans (Araneae: Oxyopidae), in a Texas cotton agroecosystem. Environ Entomol 21:1457–1465CrossRefGoogle Scholar
  37. Oliveira PS (1988) Ant-mimicry in some Brazilian salticid and clubionid spiders (Araneae: Salticidae, Clubionidae). Biol J Linn Soc 33:1–15CrossRefGoogle Scholar
  38. Pasquet A, Krafft B (1992) Cooperation and prey capture efficiency in a social spider, Anelosimus eximius (Araneae, Theridiidae). Ethology 90:121–133CrossRefGoogle Scholar
  39. Petráková L, Michalko R, Loverre P, Sentenská L, Korenko S, Pekár S (2016) Intraguild predation among spiders and their effect on the pear psylla during winter. Agric Ecosyst Environ 233:67–74CrossRefGoogle Scholar
  40. Pinto C, Saiz F (1997) Uso del recurso trofico por parte de Acanthogonatus franckii Karsch, 1880 (Araneae: Nemesiidae) en el bosque esclerofilo del Parque Nacional “La Campana”, Chile central. Rev Chil Entomol 24:45–59Google Scholar
  41. Randall JB (1982) Prey records of the green lynx spider, Peucetia viridans (Hentz) (Araneae, Oxyopidae). J Arachnol 10:19–22Google Scholar
  42. Romero GQ, Vasconocellos-Neto J (2003) Natural history of Misumenops argenteus (Thomisidae): seasonality and diet on Trichogoniopsis adenantha (Asteraceae). J Arachnol 31:297–304CrossRefGoogle Scholar
  43. Shelly TE (1983) Prey selection by the Neotropical spider, Alpaida tuonado, with notes on web-site tenacity. Psyche 90:123–133CrossRefGoogle Scholar
  44. Shelly T (1984) Prey selection by the Neotropical spider Micrathena schreibersi with notes on web-site tenacity. Proc Entomol Soc Wash 86:493–502Google Scholar
  45. Uetz GW, Biere JM (1980) Prey of Micrathena gracilis (Walckenaer) (Araneae: Araneidae) in comparison with artificial webs and other trapping devices. Bull Br Arachnol Soc 5:101–107Google Scholar
  46. Uetz GW, Hartsock SP (1987) Prey selection in an orb-weaving spider: Micrathena gracilis (Araneae, Araneidae). Psyche 94:103–116CrossRefGoogle Scholar
  47. Uetz GW, Johnson AD, Schemske DW (1978) Web placement, web structure, and prey capture in orb-weaving spiders. Bull Br Arachnol Soc 4:141–148Google Scholar
  48. Van Berkum FH (1982) Natural history of a tropical, shrimp-eating spider (Pisauridae). J Arachnol 10:117–121Google Scholar
  49. Wise D, Barata JL (1983) Prey of two syntopic spiders with different web structures. J Arachnol 11:271–281Google Scholar
  50. Zimmermann M, Spence JR (1989) Prey use of the fishing spider Dolomedes triton (Pisauridae, Araneae): an important predator of the neuston community. Oecologia 80:187–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stano Pekár
    • 1
  • Luis Fernando García
    • 2
    • 3
  • Carmen Viera
    • 4
    • 5
  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Centro Universitario de la Región Este, sede Treinta y Tres, Universidad de la RepúblicaTreinta y TresUruguay
  3. 3.Laboratorio Ecología del Comportamiento, Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  4. 4.Entomología, Biología Animal, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  5. 5.Laboratorio Ecología del Comportamiento, Instituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay

Personalised recommendations