Skip to main content

Curves, Maps and Hotspots: The Diversity and Distribution of Araneomorph Spiders in the Neotropics

  • Chapter
  • First Online:
Behaviour and Ecology of Spiders

Abstract

The infraorder Araneomorphae comprises more than nine-tenths of spider diversity, including most of the better known web-weaving spiders. As observed for other taxa, the group is particularly diverse in the Neotropics, where it can be find in any terrestrial ecosystem. In this chapter we synthesize the current taxonomic and biogeographic knowledge on the Neotropical araneomorphs, based on a large database of species described since 1758. We describe the pattern of described species accumulation through time in the Neotropics, and explore factors responsible for variations in species discovery in space and time. We also use statistical methods to predict the total number of species in the Neotropics and discuss the challenges involved in the description of the remaining Neotropical species. Finally, we describe biogeographical patterns throughout the Neotropics, based on detailed species distribution data for well-known spider families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adis J, Bonaldo AB, Brescovit AD et al (2002) Arachnida at ‘Reserva Ducke’, central Amazonia/Brazil. Amazoniana 17:1–14

    Google Scholar 

  • Agnarsson I, Coddington JA, Kuntner M (2013) Systematics — progress in the study of spider diversity and evolution. In: Penney D (ed) Spider research in the 21st century. Siri Scientific press, Manchester, pp 58–111

    Google Scholar 

  • Alligand B, Henrard A (2016) Sur l’observation de prédation par Tapinesthis inermis (Simon, 1882) (Araneae, Oonopidae) sur un psoque et mise à jour de sa distribution en France. Rev Arachnol 2:21–26

    Google Scholar 

  • Amano T, Sutherland WJ (2013) Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc R Soc Lond B Biol Sci 280:20122649

    Article  Google Scholar 

  • Azevedo GHF, Faleiro BT, Magalhães ILF et al (2014) Effectiveness of sampling methods and further sampling for accessing spider diversity: a case study in a Brazilian Atlantic rainforest fragment. Insect Conserv Divers 7:381–391

    Article  Google Scholar 

  • Banks N (1929) Spiders from Panama. Bull Mus Comp Zool 69:53–96

    Google Scholar 

  • Barriga JC, Moreno AG (2013) Listado de las arañas de Colombia (Arachnida: Araneae). Biota Colombiana 14:21–33

    Google Scholar 

  • Basset Y, Cizek L, Cuénoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484

    Article  CAS  PubMed  Google Scholar 

  • Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114

    Article  CAS  PubMed  Google Scholar 

  • Blackledge T, Coddington JA, Agnarsson I (2009) Fecundity increase supports adaptive radiation hypothesis in spider web evolution. Commun Integr Biol 2:1–5

    Article  Google Scholar 

  • Boakes EH, McGowan PJ, Fuller RA et al (2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol 8:e1000385. https://doi.org/10.1371/journal.pbio.1000385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonaldo AB, Brescovit AD, Höfer H et al (2009a) A Araneofauna (Arachnida, Araneae) da Reserva Florestal Adolfo Ducke, Manaus, Amazonas, Brasil. In: Chilson EF, Magalhães C (eds) A fauna de Artrópodos da Reserva Florestal Adolpho Ducke. Estado atual do conhecimento taxonômico e biológico. Instituto Nacional de Pesquisa da Amazonia, Manaus, pp 201–217

    Google Scholar 

  • Bonaldo AB, Carvalho LS, Pinto-da-Rocha R et al (2009b) Inventário e história natural dos aracnídeos da Floresta Nacional de Caxiuanã. In: Lisboa PLB (ed) Caxiuanã: desafios para a conservação de uma Floresta Nacional na Amazônia. Museu Paraense Emílio Goeldi, Belém, pp 577–621

    Google Scholar 

  • Bond JA, Opell BD (1998) Testing adaptive radiation and key innovation hypotheses in spiders. Evolution 52:403–414

    Article  PubMed  Google Scholar 

  • Bond JE, Hendrixson BE, Hamilton CA et al (2012) A reconsideration of the classification of the spider infraorder Mygalomorphae (Arachnida: Araneae) based on three nuclear genes and morphology. PLoS One 7:e38753. https://doi.org/10.1371/journal.pone.0038753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brescovit AD (1999) Araneae. In: Joly CA, Bicudo CEM (eds) Biodiversidade do Estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX, Invertebrados terrestres, vol 5. FAPESP, São Paulo, pp 47–56

    Google Scholar 

  • Bryant EB (1940) Cuban spiders in the museum of comparative zoology. Bull Mus Comp Zool 86:247–532

    Google Scholar 

  • Bryant EB (1948) The spiders of Hispaniola. Bull Mus Comp Zool 100:329–447

    Google Scholar 

  • Burgman MA, Fox JC (2003) Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Anim Conserv 6:19–28

    Article  Google Scholar 

  • Cafofo EG, Saturnino R, Santos AJ, Bonaldo AB (2013) Riqueza e composição em espécies de aranhas da Floresta Nacional de Caxiuanã. In: Lisboa PLB (ed) Caxiuanã: paraíso ainda preservado. Museu Paraense Emílio Goeldi, Belém, pp 539–561

    Google Scholar 

  • Cardoso P, Erwin TL, Borges PA, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Carnaval AC, Moritz C, Hickerson M et al (2009) Stability predicts diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    Article  CAS  PubMed  Google Scholar 

  • Carvalho LS, Martins PH, Schneider MC, Cabra-García JJ (2017) New records of spiders (Arachnida, Araneae) from the state of Roraima, northern Brazil. Check List 13. 10.15560/13.1.2040

  • Chickering AM (1946) The Salticidae of Panama. Bull Mus Comp Zool 97:1–474

    Google Scholar 

  • Chickering AM (1968a) The genus Dysderina (Araneae, Oonopidae) in Central America and the West Indies. Breviora 296:1–37

    Google Scholar 

  • Chickering AM (1968b) The genus Ischnothyreus (Araneae, Oonopidae) in Central America and the West Indies. Psyche 75:77–86

    Article  Google Scholar 

  • Chickering AM (1968c) The genus Scaphiella (Araneae, Oonopidae) in Central America and the West Indies. Psyche 75:135–156

    Article  Google Scholar 

  • Chickering AM (1968d) The genus Triaeris Simon (Araneae, Oonopidae) in Central America and the West Indies. Psyche 75:351–359

    Google Scholar 

  • Chickering AM (1969) The genus Stenoonops (Araneae, Oonopidae) in Panama and the West Indies. Breviora 339:1–35

    Google Scholar 

  • Chickering AM (1970) The genus Oonops (Araneae, Oonopidae) in Panama and the West Indies. Part 1. Psyche 77:487–512

    Article  Google Scholar 

  • Chickering AM (1971) The genus Oonops (Araneae, Oonopidae) in Panama and the West Indies. Part 2. Psyche 78:203–214

    Article  Google Scholar 

  • Chickering AM (1972) The genus Oonops (Araneae, Oonopidae) in Panama and the West Indies. Part 3. Psyche 79:104–115

    Article  Google Scholar 

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592

    Article  Google Scholar 

  • Conniff R (2011) The species seekers: heroes, fools, and the mad pursuit of life on earth. WW Norton and Company, London

    Google Scholar 

  • Connor EF, McCoy ED (2001) Species–area relationships. In: Levin S (ed) Encyclopedia of biodiversity, vol 5. Elsevier, London, pp 397–411

    Chapter  Google Scholar 

  • Costello MJ, May RM, Stork NE (2013) Can we name Earth’s species before they go extinct? Science 339:413–416

    Article  CAS  PubMed  Google Scholar 

  • Cox CB (2001) The biogeographic regions reconsidered. J Biogeogr 28:511–523

    Article  Google Scholar 

  • Craig CL, Bernard GD, Coddington JA (1994) Evolutionary shifts in the spectral properties of spider silks. Evolution 48:287–296

    Article  PubMed  Google Scholar 

  • Cushing PE (2005) Introduction. In: Ubick D, Paquin P, Cushing PE et al (eds) Spiders of North America: an identification manual. American Arachnological Society, Poughkeepsie, pp 1–17

    Google Scholar 

  • Dantas GPM, Cabanne GS, Santos FR (2011) How past vicariant events can explain the Atlantic Forest biodiversity? In: Grillo O, Venora G (eds) Ecosystems biodiversity. InTech, Rijeka, pp 429–442

    Google Scholar 

  • DaSilva MB, Pinto-da-Rocha R, DeSouza AM (2015) A protocol for the delimitation of areas of endemism and the historical regionalization of the Brazilian Atlantic rain forest using harvestmen distribution data. Cladistics 31:692–705

    Article  Google Scholar 

  • Dimitrov D, Benavides Silva LR, Arnedo MA et al (2017) Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family–rank classification (Araneae, Araneoidea). Cladistics 33:221–250

    Article  Google Scholar 

  • Diniz-filho JAF, De Marco P Jr, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179

    Google Scholar 

  • ESRI (2017) How Kernel Density works. http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm. Accessed 15 Apr 2017

  • Fannes W, De Bakker D, Loosveldt K et al (2008) Estimating the diversity of arboreal oonopid spider assemblages (Araneae, Oonopidae) at Afrotropical sites. J Arachnol 36:322–330

    Article  Google Scholar 

  • Finch OD, Blick T, Schuldt A (2008) Macroecological patterns of spider species richness across Europe. Biodivers Conserv 17:2849–2868

    Article  Google Scholar 

  • Foelix R (2011) Biology of spiders, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Fonseca GAB, Rylands A, Paglia A et al (2004) Atlantic forest. In: Mittermeier RA, Gil PR, Hoffman M et al (eds) Hotspots revisited. Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 84–91

    Google Scholar 

  • Fontaine B, Perrard A, Bouchet P (2012) 21 years of shelf life between discovery and description of new species. Curr Biol 22:R943–R944

    Article  CAS  PubMed  Google Scholar 

  • Foord SH, Dippenaar-Schoeman AS, Haddad CR (2011) South African spider diversity: African perspectives on the conservation of a mega-diverse group. In: Grillo O, Venora G (eds) Changing diversity in changing environment. Intech, Rijeka, pp 163–182

    Google Scholar 

  • Fortin MJ, Keitt TH, Maurer BA et al (2005) Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108:7–17

    Article  Google Scholar 

  • Funk VA, Richardson KS, Ferrier S (2005) Survey-gap analysis in expeditionary research: where do we go from here? Biol J Linn Soc Lond 85:549–567

    Article  Google Scholar 

  • Garrison NL, Rodriguez J, Agnarsson I et al (2016) Spider phylogenomics: untangling the spider tree of life. PeerJ 4:e1719. https://doi.org/10.7717/peerj.1719

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaston KJ, Fuller RA (2009) The sizes of species’ geographic ranges. J Appl Ecol 46:1–9

    Article  Google Scholar 

  • Godman FD (1915) Introductory volume. In: Godman FD, Salvim O (eds) Biologia Centrali-Americana. R.H. Porter, London

    Google Scholar 

  • Grismado CJ, Ramírez MJ (2013) The New World goblin spiders of the new genus Neotrops (Araneae: Oonopidae), Part 1. Bull Am Mus Nat Hist 383:1–150

    Article  Google Scholar 

  • Hagen JB (1990) Problems in the institutionalization of tropical biology: the case of the Barro Colorado Island biological laboratory. Hist Philos Life Sci 12:225–247

    CAS  PubMed  Google Scholar 

  • Heyer WR, Coddington JA, Kress WJ et al (1999) Amazonian biotic data and conservation decisions. Cienc Cult 51:372–385

    Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • Hoffmeister CH, Ferrari A (2016) Areas of endemism of arthropods in the Atlantic Forest (Brazil): an approach based on a metaconsensus criterion using endemicity analysis. Biol J Linn Soc Lond 119:126–144

    Article  Google Scholar 

  • Hopkins MJ (2007) Modelling the known and unknown plant biodiversity of the Amazon Basin. J Biogeogr 34:1400–1411

    Article  Google Scholar 

  • Hortal J, de Bello F, Diniz-Filho JAF et al (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549

    Article  Google Scholar 

  • Huber BA (2014) Progress and prospects in taxonomy: what is our goal and are we ever going to reach it? J Arachnol 42:142–147

    Article  Google Scholar 

  • Huber BA (2015) Small scale endemism in Brazil’s Atlantic Forest: 14 new species of Mesabolivar (Araneae, Pholcidae), each known from a single locality. Zootaxa 3942:1–60

    Article  PubMed  Google Scholar 

  • Huber BA (2016) Spider diversity and endemism in a south American hotspot: 20 new species of Carapoia (Araneae: Pholcidae) from Brazil’s Atlantic Forest. Zootaxa 4177:1–69

    Article  PubMed  Google Scholar 

  • Jocqué R, Alderweireldt M, Dippenaar-Schoeman A (2013) Biodiversity: an African perspective. In: Penney D (ed) Spider research in the 21st century: trends and perspectives. Siri Scientific Press, Manchester, pp 18–57

    Google Scholar 

  • Keyserling E (1877) Amerikanische Spinnenarten aus den Familien der Pholcoidae, Scytodoidae und Dysderoidae. Verh Zool Bot Ges Wien 27:205–234

    Google Scholar 

  • Korenko S, Hamouzová K, Pekár S (2014) Trophic niche and predatory behavior of the goblin spider Triaeris stenaspis (Oonopidae): a springtail specialist? J Arachnol 42:74–78

    Article  Google Scholar 

  • Leibensperger LB (2016) Herbert Walter Levi (1921–2014) and Lorna Levi (1928–2014). Breviora 551:1–37

    Article  Google Scholar 

  • Levi HW (1964) Nineteenth century South American araneology. Pap Avulsos Zool 16:9–19

    Google Scholar 

  • Levi HW (1996) The American orb weavers Hypognatha, Encyosaccus, Xylethrus, Gasteracantha, and Enacrosoma (Araneae, Araneidae). Bull Mus Comp Zool 155:89–157

    Google Scholar 

  • Levi HW (2002) Keys to the genera of araneid orbweavers (Araneae, Araneidae) of the Americas. J Arachnol 30:527–562

    Article  Google Scholar 

  • Levi HW (2004) Comments and new records for the American genera Gea and Argiope with the description of new species (Araneae: Araneidae). Bull Mus Comp Zool 158:47–65

    Article  Google Scholar 

  • Levi HW (2007) The orb weaver genus Mangora in South America (Araneae, Araneidae). Bull Mus Comp Zool 159:1–144

    Article  Google Scholar 

  • Linnaeus C (1758) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus differentiis, synonymis, locis. Editio decima, reformata. Holmiae

    Google Scholar 

  • Lise AA, Kesster CC, Silva ELC (2015) Revision of the orb-weaving spider genus Verrucosa McCook, 1888 (Araneae, Araneidae). Zootaxa 3921:1–105

    Article  PubMed  Google Scholar 

  • Magalhães ILF, Martins PH, Nogueira AA et al (2017) Finding hot singles: matching males to females in dimorphic spiders (Araneidae: Micrathena) using phylogenetic placement and DNA barcoding. Invertebr Syst 31:8–36

    Article  Google Scholar 

  • Melo AS, Rangel TFL, Diniz-Filho JAF (2009) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32:226–236

    Article  Google Scholar 

  • Meng K, Li S, Murphy RW (2008) Biogeographical patterns of Chinese spiders (Arachnida: Araneae) based on a parsimony analysis of endemicity. J Biogeogr 35:1241–1249

    Article  Google Scholar 

  • Mittermeier R, Mittermeier CG, Gil PR et al (2003) Wilderness: Earth’s last wild places. Conservation International, Washington, DC

    Google Scholar 

  • Mittermeier R, Schipper J, Davidse G et al (2004) Mesoamerica. In: Mittermeier RA, Gil PR, Hoffman M et al (eds) Hotspots revisited. Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 103–112

    Google Scholar 

  • Moerman DE, Estabrook GF (2006) The botanist effect: counties with maximal species richness tend to be home to universities and botanists. J Biogeogr 33:1969–1974. https://doi.org/10.1111/j.1365-2699.2006.01549.x

    Article  Google Scholar 

  • Moss DF, Feitosa NM, Bonaldo AB et al (2016) Description of eleven new species of the goblin spider genus Neoxyphinus Birabén, 1953 (Araneae, Oonopidae). Zootaxa 4098:95–133

    Article  PubMed  Google Scholar 

  • Nentwig W (1993) Spiders of Panama: biogeography, investigation, phenology, check list, key and bibliography of a tropical spider fauna. Sandhill Crane Press, Gainesville

    Google Scholar 

  • Nentwig W, Blick T, Gloor D et al (2017) Spiders of Europe. www.araneae.unibe.ch. Accessed 22 Feb 2017

  • Oliveira U, Brescovit AD, Santos AJ (2015) Delimiting areas of endemism through kernel interpolation. PLoS One 10:e0116673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira U, Paglia AP, Brescovit AD et al (2016) The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Glob Ecol Biogeogr 22:1232–1244

    Google Scholar 

  • Oliveira U, Brescovit AD, Santos AJ (2017) Sampling effort and species richness assessment: a case study on Brazilian spiders. Biodivers Conserv (in press). https://doi.org/10.1007/s10531-017-1312-1

  • Penney D (2013) Spider research in the 21st century: trends and perspectives. Siri Scientific Press, Manchester

    Google Scholar 

  • Penney D, Selden PA (2011) Fossil spiders: the evolutionary history of a mega-diverse order. Siri Scientific Press, Manchester

    Google Scholar 

  • Petrunkevitch A (1911) A synonymic index-catalogue of spiders of North, Central and South America with all adjacent islands, Greenland, Bermuda, West Indies, Terra del Fuego, Galapagos, etc. Bull Am Mus Nat Hist 29:1–791

    Google Scholar 

  • Petrunkevitch A (1930) The spiders of Porto Rico, vol 31. Connecticut Academy of Arts and Sciences, New Haven, pp 1–191

    Google Scholar 

  • Platnick NI (1999) Dimensions of biodiversity: targeting megadiverse groups. In: Cracraft J, Grifo T (eds) The living planet in crisis: biodiversity science and policy. Columbia University Press, New York, pp 33–52

    Google Scholar 

  • Platnick NI, Berniker L (2014) The goblin spider genus Costarina (Araneae, Oonopidae), Part 3. Am Mus Novit 3819:1–67

    Article  Google Scholar 

  • Platnick NI, Dupérré N (2010) The Andean goblin spiders of the new genera Niarchos and Scaphios (Araneae, Oonopidae). Bull Am Mus Nat Hist 345:1–120. https://doi.org/10.1206/727.1

    Article  Google Scholar 

  • Platnick NI, Dupérré N (2011a) The Andean goblin spiders of the new genera Paradysderina and Semidysderina (Araneae, Oonopidae). Bull Am Mus Nat Hist 364:1–121

    Article  Google Scholar 

  • Platnick NI, Dupérré N (2011b) The Andean goblin spiders of the new genus Scaphidysderina (Araneae, Oonopidae), with notes on Dysderina. Am Mus Novit 3712:1–51

    Article  Google Scholar 

  • Platnick NI, Gertsch WJ (1976) The suborders of spiders: a cladistic analysis (Arachnida, Araneae). Am Mus Novit 2607:1–18

    Google Scholar 

  • Platnick NI, Raven RJ (2013) Spider systematics: past and future. Zootaxa 3683:595–600

    Article  PubMed  Google Scholar 

  • Platnick NI, Berniker L, Bonaldo AB (2013a) The South American goblin spider genera Dysderina and Tridysderina (Araneae, Oonopidae). Am Mus Novit 3772:1–52

    Article  Google Scholar 

  • Platnick NI, Dupérré N, Berniker L et al (2013b) The goblin spider genera Prodysderina, Aschnaoonops, and Bidysderina (Araneae, Oonopidae). Bull Am Mus Nat Hist 373:1–102

    Article  Google Scholar 

  • Platnick NI, Berniker L, Víquez C (2014) The goblin spider genus Costarina (Araneae, Oonopidae), Part 2: the Costa Rican fauna. Am Mus Novit 3794:1–75

    Article  Google Scholar 

  • Rodríguez-Mahecha JV, Salaman P, Jørgensen O et al (2004a) Tropical Andes. In: Mittermeier RA, Gil PR, Hoffman M et al (eds) Hotspots revisited. Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 73–79

    Google Scholar 

  • Rodríguez-Mahecha JV, Salaman P, Jørgensen O et al (2004b) Tumbes-Chocó-Magdalena. In: Mittermeier RA, Gil PR, Hoffman M et al (eds) Hotspots revisited. Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 80–84

    Google Scholar 

  • Rubio GD, Corronca JA, Damborsky MP (2008) Do spider diversity and assemblages change in different contiguous habitats? A case study in the protected habitats of the humid chaco ecoregion, northeast Argentina. Environ Entomol 37:419–430

    Article  PubMed  Google Scholar 

  • Saiter FZ, Brown JL, Thomas WW et al (2016) Environmental correlates of floristic regions and plant turnover in the Atlantic Forest hotspot. J Biogeogr 43:2322–2331. https://doi.org/10.1111/jbi.12774

    Article  Google Scholar 

  • Santos AJ (2002) Description of the male of Hypognatha belem (Araneae, Araneidae). Iheringia Ser Zool 92:91–92

    Article  Google Scholar 

  • Sastre P, Lobo JM (2009) Taxonomist survey biases and the unveiling of biodiversity patterns. Biol Conserv 142:462–467

    Article  Google Scholar 

  • Saturnino R, Rodrigues BVB, Bonaldo AB (2015) Alpaida (Araneae: Araneidae) from the Amazon Basin and Ecuador: new species, new records and complementary descriptions. Fortschr Zool 32:241–256

    Google Scholar 

  • Savory TH (1961) Spiders, men, and scorpions: being the history of arachnology. University of London Press, London

    Google Scholar 

  • Scheffers BR, Joppa LN, Pimm SL et al (2012) What we know and don’t know about Earth’s missing biodiversity. Trends Ecol Evol 27:501–510

    Article  PubMed  Google Scholar 

  • Selander RB, Vaurie P (1962) A gazetteer to accompany the Insecta volumes of the biologia Centrali-Americana. Am Mus Novit 2099:1–70

    Google Scholar 

  • Silva D (1996) Species composition and community structure of Peruvian rainforest spiders: a case study from a seasonally inundated forest along the Samiria river. Rev Suisse Zool, vol hors serie:597–610

    Google Scholar 

  • Silva S, Moraes-Barros N, Ribas CC et al (2012) Divide to conquer: a complex pattern of biodiversity depicted by vertebrate components in the Brazilian Atlantic Forest. Biol J Linn Soc Lond 107:39–55

    Article  Google Scholar 

  • Sobral M, Stehmann JR (2009) An analysis of new angiosperm species discoveries in Brazil (1990–2006). Taxon 58:227–232

    Google Scholar 

  • Wheeler WH, Coddington JA, Crowley LM et al (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 2016:1–43. https://doi.org/10.1111/cla.12182

    Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • World Spider Catalog (2017) World Spider Catalog. Natural History Museum Bern, version 18.0. http://wsc.nmbe.ch. Accessed 8 Apr 2017

  • Xu X, Liu FX, Chen J et al (2015) A genus-level taxonomic review of primitively segmented spiders (Mesothelae, Liphistiidae). ZooKeys 488:121–151

    Article  Google Scholar 

  • Zhang Z-Q (2013) Phylum Arthropoda. In: Zhang, Z-Q (ed) animal biodiversity: an outline of higher-level classification and survey of taxonomic richness (addenda 2013). Zootaxa 3703:1–82

    Article  PubMed  Google Scholar 

  • Zhang JX, Maddison WP (2012) New euophryine jumping spiders from Central and South America (Araneae: Salticidae: Euophryinae). Zootaxa 3578:1–35

    Google Scholar 

  • Zúñiga-Vega CM (1980) Lista anotada de especies de arañas de Costa Rica. Brenesia 18:301–352

    Google Scholar 

Download references

Acknowledgements

We are grateful to Marcelo O. Gonzaga and Carmen Viera for the opportunity of preparing this revision, for the confidence they placed in us and, most importantly, their patience waiting to receive the first draft. Thanks are also extended to Pedro H. Martins, for providing oonopid and araneid photos, and to Alexandre B. Bonaldo for reviewing the first draft of the text. The data discussed here is part of a long-term project from the authors, which has been continuously funded by CNPq (Procs. 407288/2013-9; 306222/2015-9 to AJS, and 301776/2004-0 to ADB), FAPEMIG (PPM-00651-15, AJS), FAPESP (2011/50689-0, ADB), and Instituto Nacional de Ciência e Tecnologia dos Hymenoptera Parasitóides da Região Sudeste Brasileira (http://www.hympar.ufscar.br/). AJS and ADB also received financial support from the Goblin Spider PBI (http://research.amnh.org/oonopidae). MOT was financially supported by an undergraduate research fellowship from PIBIC/CNPq, PRS from PRONOTURNO/FUMP/UFMG and a CAPES Master’s Dissertation Fellowship, and UO from a CAPES doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalberto J. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santos, A.J., Brescovit, A.D., de Oliveira-Tomasi, M., Russo, P., Oliveira, U. (2017). Curves, Maps and Hotspots: The Diversity and Distribution of Araneomorph Spiders in the Neotropics. In: Viera, C., Gonzaga, M. (eds) Behaviour and Ecology of Spiders. Springer, Cham. https://doi.org/10.1007/978-3-319-65717-2_1

Download citation

Publish with us

Policies and ethics