Memristor Device for Security and Radiation Applications

Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

The first physical demonstration of a non-volatile resistive-switching memory based on the nanostructured Pt/TiO2/Pt metal/insulator/metal stack from HP, has spurred the scientific community to develop memristive devices for a wide variety of applications. Owing to low-power and ultra-fast switching capabilities, memristors with nanoscale thickness geometry have been extensively investigated as potential replacements for flash memory technology in simple analog- and digital- computing applications. In Addition, both scalability and interconnectivity of memristors, through brain-inspired computing, have sparked a considerable move toward advancing of next-generation intelligent computing systems. On the horizon, other potential uses of the memristor have also emerged, particularly in sensing where attractive measurable changes in the IV fingerprint of some device configurations have been demonstrated under certain types of extrinsic disturbances. Additionally, the unique and chaotic IV response of some memristors opens the door for potential applications in hardware security. This chapter reports on novel approaches to utilize the electrical characteristics of the fabricated memristive devices for radiation sensing and security applications.

Keywords

Memristor Micro Nano Radiation Key Characteristics Security Switching IoT Communication 

References

  1. 1.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  2. 2.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRefGoogle Scholar
  3. 3.
    S.D. Ha, Adaptive oxide electronics: A review. J. Appl. Phys. 110, 071101 (2011)CrossRefGoogle Scholar
  4. 4.
    L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    S. Shinde, T. Dongle, Modelling of nanostructured TiO2-based memristors. J. Semiconductors 36, 034001 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Mazumder, S.M. Kang, R. Waser, Memristors: devices, models, and applications. Proc. IEEE 100, 1911–1919 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Kim, S. Choi, W. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 8, 2369–2376 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Chua, Memristors: A new nanoscale CNN cell, in Cellular Nanoscale Sensory Wave Computing (Springer, Berlin, 2010), pp. 87–115Google Scholar
  9. 9.
    Y.V. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 881–886 (2010)CrossRefGoogle Scholar
  10. 10.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  11. 11.
    N.S.M. Hadis, A.A. Manaf, S.H. Herman, Comparison on TiO2 thin film deposition method for fluidic based glucose memristor sensor, in 2015 IEEE International Circuits and Systems Symposium (ICSyS) (2015), pp. 36–39Google Scholar
  12. 12.
    I. Tzouvadaki, N. Madaboosi, R. Soares, V. Chu, J. Conde, G. De Micheli et al., Bio-functionalization study of Memristive-Biosensors for early detection of prostate cancer, in Ph.D. Research in Microelectronics and Electronics (PRIME), 2015 11th Conference on (2015), pp. 17–20Google Scholar
  13. 13.
    S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici, Memristive-biosensors: A new detection method by using nanofabricated memristors. Sens. Actuators B: Chem. 171, 449–457 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, Memristive crypto primitive for building highly secure physical unclonable functions. Sci. Rep. 5, 12785 (2015)Google Scholar
  15. 15.
    Y. Gao, D.C. Ranasinghe, S.F. Al-Sarawi, O. Kavehei, D. Abbott, Emerging physical unclonable functions with nanotechnology. IEEE Access 4, 61–80 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Wang, Y. Chen, Y. Gu, H. Li, Spintronic memristor temperature sensor. IEEE Electron Device Lett. 31, 20–22 (2010)CrossRefGoogle Scholar
  17. 17.
    D. Sacchetto, M.-A. Doucey, G. De Micheli, Y. Leblebici, S. Carrara, New insight on bio-sensing by nano-fabricated memristors. BioNanoScience 1, 1–3 (2011)CrossRefGoogle Scholar
  18. 18.
    N.S.M. Hadis, A.A. Manaf, S.H. Herman, Trends of deposition and patterning techniques of TiO2 for memristor based bio-sensing applications. Microsyst. Technol. 19, 1889–1896 (2013)CrossRefGoogle Scholar
  19. 19.
    E. Chen, J. Thornton, C. Mulchi Jr., Mapping circular current for a single brain cancer cell’s spatial-temporal orientations based on a memristor/memcapacitor. Sens. Transducers 183, 72 (2014)Google Scholar
  20. 20.
    I. Tzouvadaki, C. Parrozzani, A. Gallotta, G. De Micheli, S. Carrara, Memristive biosensors for PSA-IgM detection. BioNanoScience 5, 189–195 (2015)CrossRefGoogle Scholar
  21. 21.
    N.S.M. Hadis, A.A. Manaf, S.H. Herman, S.H. Ngalim, ROFF/RON ratio of nano-well fluidic memristor sensor towards hydroxide based liquid detection, in Nanotechnology (IEEE-NANO), 2015 IEEE 15th International Conference on (2015), pp. 1078–1081Google Scholar
  22. 22.
    P.D. Wilson, The Nuclear Fuel Cycle: From Ore to Wastes (Oxford University Press, Oxford, New York, 1996), pp. 184–200; 252–271Google Scholar
  23. 23.
    C.S. Cook, initial and ionizing radiations from nuclear weapons, in Sources, Fields, Measurements, and Applications, 2nd edn, ed. By F.H.A. Tochilin (Academic Press, Cambridge, 1969), pp. 361–399Google Scholar
  24. 24.
    H.I. Kohn, Sources, effects and risks of ionizing radiation. Radiat. Res. 120, 187–188 (1989)CrossRefGoogle Scholar
  25. 25.
    K. Kamiya, K. Ozasa, S. Akiba, O. Niwa, K. Kodama, N. Takamura et al., Long-term effects of radiation exposure on health. The Lancet 386, 469–478 (2015)CrossRefGoogle Scholar
  26. 26.
    G.F. Knoll, Radiation Detection and Measurement, 4th edn (Wiley, New Jersey, 2010), p. 131Google Scholar
  27. 27.
    E. Kamaya, F. Matsumoto, Y. Kondo, Y. Chujo, M. Katagiri, Organic scintillators containing 10 B for neutron detectors. Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 529, 329–331 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Pellegrin, C. Whitney, C.G. Wilson, A multichannel nanoparticle scintillation microdevice with integrated waveguides for alpha, beta, gamma, X-ray, and neutron detection, in Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on (2006), pp. 682–685Google Scholar
  29. 29.
    W. McLaughlin, J.M. Puhl, M. Al-Sheikhly, C. Christou, A. Miller, A. Kovacs et al., Novel radiochromic films for clinical dosimetry. Radiat. Prot. Dosim. 66, 263–268 (1996)CrossRefGoogle Scholar
  30. 30.
    G. Ristić, S. Golubović, M. Pejović, P-channel metal–oxide–semiconductor dosimeter fading dependencies on gate bias and oxide thickness. Appl. Phys. Lett. 66, 88–89 (1995)CrossRefGoogle Scholar
  31. 31.
    G. Rikner, E. Grusell, General specifications for silicon semiconductors for use in radiation dosimetry. Phys. Med. Biol. 32, 1109 (1987)CrossRefGoogle Scholar
  32. 32.
    J. Izewska, G. Rajan, Radiation dosimeters. Radiat. Oncol. Phys. A Handb. Teachers Students 36, 71–99 (2005)Google Scholar
  33. 33.
    L. Asensio, M. Carvajal, J. López-Villanueva, M. Vilches, A. Lallena, A. Palma, Evaluation of a low-cost commercial mosfet as radiation dosimeter. Sens. Actuators A Phys. 125, 288–295 (2006)CrossRefGoogle Scholar
  34. 34.
    W.M. Tong, J.J. Yang, P.J. Kuekes, D.R. Stewart, R.S. Williams, E. DeIonno et al., Radiation hardness of memristive junctions. Nucl. Sci. IEEE Trans. 57, 1640–1643 (2010)CrossRefGoogle Scholar
  35. 35.
    F. Yuan, Z. Zhang, J.-C. Wang, L. Pan, J. Xu, C.-S. Lai, Total ionizing dose (TID) effects of γ ray radiation on switching behaviors of Ag/AlO x/Pt RRAM device. Nanoscale Res. Lett. 9, 1–6 (2014)CrossRefGoogle Scholar
  36. 36.
    E. DeIonno, M.D. Looper, J.V. Osborn, H.J. Barnaby, W.M. Tong, Radiation effects studies on thin film TiO 2 memristor devices, in Aerospace Conference, 2013 IEEE (2013), pp. 1–8Google Scholar
  37. 37.
    M.J. Marinella, S.M. Dalton, P.R. Mickel, P.E.D. Dodd, M.R. Shaneyfelt, E. Bielejec et al., Initial assessment of the effects of radiation on the electrical characteristics of memristive memories. Nucl. Sci. IEEE Trans. 59, 2987–2994 (2012)CrossRefGoogle Scholar
  38. 38.
    E. DeIonno, A.L. White, Sensitivity of metal oxide memristors to radiation-induced displacement damage, in Aerospace Conference, 2014 IEEE (2014), pp. 1–5Google Scholar
  39. 39.
    H. Barnaby, S. Malley, M. Land, S. Charnicki, A. Kathuria, B. Wilkens et al., Impact of alpha particles on the electrical characteristics of TiO memristors. Nucl. Sci. IEEE Trans. 58, 2838–2844 (2011)CrossRefGoogle Scholar
  40. 40.
    E. Deionno, M.D. Looper, J.V. Osborn, J.W. Palko, Displacement damage in TiO2 memristor devices. Nucl. Sci. IEEE Trans. 60, 1379–1383 (2013)CrossRefGoogle Scholar
  41. 41.
    D. Garbin, E. Vianello, Q. Rafhay, M. Azzaz, P. Candelier, B. DeSalvo et al., Resistive memory variability: A simplified trap-assisted tunneling model. Solid-State Electron. 115, 126–132 (2016)CrossRefGoogle Scholar
  42. 42.
    S. Gaba, P. Knag, Z.Y. Zhang, W. Lu, Memristive devices for stochastic computing, 2014 IEEE International Symposium on Circuits and Systems (Iscas) (2014), pp. 2592–2595Google Scholar
  43. 43.
    M. Burmester, Y. Desmedt, A secure and efficient conference key distribution system, in Workshop on the Theory and Application of of Cryptographic Techniques (1994), pp. 275–286Google Scholar
  44. 44.
    M. Just, S. Vaudenay, Authenticated multi-party key agreement, in International Conference on the Theory and Application of Cryptology and Information Security (1996), pp. 36–49Google Scholar
  45. 45.
    X. Du, Y. Wang, J. Ge, Y. Wang, An improved ID-based authenticated group key agreement scheme. IACR Cryptol. ePrint Arch. 2003, 260 (2003)Google Scholar
  46. 46.
    S. Kyung-Ah, Further analysis of ID-based authenticated group key agreement protocol from bilinear maps. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90, 295–298 (2007)Google Scholar
  47. 47.
    C.Y. Yeun, K. Han, D.L. Vo, K. Kim, Secure authenticated group key agreement protocol in the MANET environment. Inf. Secur. Tech. Rep. 13, 158–164 (2008)Google Scholar
  48. 48.
    H. Abunahla, D. Shehada, C.Y. Yeun, C.J. OKelly, M.A. Jaoude, B. Mohammad, Novel microscale memristor with uniqueness property for securing communications. In Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium on (2016), pp. 1–4 ‏Google Scholar
  49. 49.
    H. Abunahla, D. Shehada, C.Y. Yeun, B. Mohammad, M.A. Jaoude, Novel secret key generation techniques using memristor devices. AIP Adv. 6(2), 025107 (2016)CrossRefGoogle Scholar
  50. 50.
    A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  51. 51.
    X.-M. Bai, B.P. Uberuaga, Multi-timescale investigation of radiation damage near TiO2 rutile grain boundaries. Philos. Mag. 92, 1469–1498 (2012)CrossRefGoogle Scholar
  52. 52.
    H. Abunahla, M.A. Jaoude, C.J. O’Kelly, B. Mohammad, Sol-gel/drop-coated micro-thick TiO2 memristors for γ-ray sensing. Mater. Chem. Phys. 184, 72–81 (2016)CrossRefGoogle Scholar
  53. 53.
    J.P. Strachan, D.B. Strukov, J. Borghetti, J.J. Yang, G. Medeiros-Ribeiro, R.S. Williams, The switching location of a bipolar memristor: chemical, thermal and structural mapping. Nanotechnology 22, 254015 (2011)Google Scholar
  54. 54.
    Q. Li, H. Xu, A. Khiat, Z. Sun, T. Prodromakis, Impact of active areas on electrical characteristics of TiO2 based solid-state memristors, in 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (2015), pp. 185–188Google Scholar
  55. 55.
    C.J. Cremers, The scyther tool: verification, falsification, and analysis of security protocols, in International Conference on Computer Aided Verification (2008), pp. 414–418Google Scholar
  56. 56.
    C. Cremers, S. Mauw, Operational Semantics and Verification of Security Protocols (Springer, Berlin, 2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Khalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations