Memristor Device Overview

  • Heba Abunahla
  • Baker Mohammad
Part of the Analog Circuits and Signal Processing book series (ACSP)


Memristors are one of the emerging technologies that can potentially replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. Over the past few years, research and development mostly focused on revolutionizing the metal-oxide materials, which are used as core components of the popular metal-insulator-metal (MIM) memristors owing to their highly recognized resistive switching behavior. This chapter outlines the recent advancements and characteristics of such memristive devices, with a special focus on (i) their established resistive switching mechanisms and (ii) the key challenges associated with their fabrication processes including the impeding criteria of material adaptation for the electrode, capping, and insulator component layers. Potential applications and an outlook into the future development of metal-oxide memristive devices are also outlined.


Memory Memristor RRAM Thin film Electrode Metal-oxide Switching Mechanism VCM ECM Fuse-antifuse Fabrication Unipolar Bipolar 


  1. 1.
    J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)CrossRefGoogle Scholar
  2. 2.
    S.D. Ha, Adaptive oxide electronics: A review. J. Appl. Phys. 110, 071101 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    S. Shinde, T. Dongle, Modelling of nanostructured TiO2-based memristors. J. Semiconductors 36, 034001 (2015)CrossRefGoogle Scholar
  5. 5.
    P. Mazumder, S.M. Kang, R. Waser, Memristors: Devices, models, and applications. Proc. IEEE 100, 1911–1919 (2012)CrossRefGoogle Scholar
  6. 6.
    M.G.A. Mohamed, H. Kim, T.W. Cho, New modeling technique for memristor devices to cover deviation from memristive theory, 2014 International Conference on Electronics, Information and Communications (Iceic), 2014Google Scholar
  7. 7.
    L. Chua, Memristors: A new nanoscale CNN cell, in Cellular Nanoscale Sensory Wave Computing, Springer, 2010, pp. 87–115Google Scholar
  8. 8.
    Y.V. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23, 881–886 (2010)CrossRefGoogle Scholar
  9. 9.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  10. 10.
    L.O. Chua, “Memristor—Missing Circuit Element. IEEE Trans. Circ. Theor. CT18, 507–519 (1971)Google Scholar
  11. 11.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  13. 13.
    T. Prodromakis, C. Toumazou, L. Chua, Two centuries of memristors. Nat. Mater. 11, 478–481 (2012)CrossRefGoogle Scholar
  14. 14.
    R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)CrossRefGoogle Scholar
  15. 15.
    A. Asamitsu, Y. Tomioka, H. Kuwahara, Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature, 388, 50–52 (1997)Google Scholar
  16. 16.
    M. Kozicki, M. Yun, L. Hilt, A. Singh, Applications of programmable resistance changes in metal-doped chalcogenides. Pennington NJ USA: Electrochem. Soc, 298–309 (1999)Google Scholar
  17. 17.
    A. Beck, J. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)CrossRefGoogle Scholar
  18. 18.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)CrossRefGoogle Scholar
  19. 19.
    U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 193–200 (2009)CrossRefGoogle Scholar
  20. 20.
    D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)CrossRefGoogle Scholar
  22. 22.
    G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970)CrossRefGoogle Scholar
  23. 23.
    B. Choi, D. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)CrossRefGoogle Scholar
  24. 24.
    B.J. Choi, J.J. Yang, M.-X. Zhang, K.J. Norris, D.A. Ohlberg, N.P. Kobayashi et al., Nitride memristors. Appl. Phys. A 109, 1–4 (2012)CrossRefGoogle Scholar
  25. 25.
    T. Menke, R. Dittmann, P. Meuffels, K. Szot, R. Waser, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J. Appl. Phys. 106, 114507 (2009)CrossRefGoogle Scholar
  26. 26.
    W. Wang, S. Fujita, S. Simon Wong, Elimination of forming process for TiOx nonvolatile memory devices. IEEE Electron Device Lett. 30, 763–765 (2009)Google Scholar
  27. 27.
    F. Gomez-Marlasca, N. Ghenzi, M. Rozenberg, P. Levy, Understanding electroforming in bipolar resistive switching oxides. Appl. Phys. Lett. 98, 042901 (2011)CrossRefGoogle Scholar
  28. 28.
    J.J. Yang, F. Miao, M.D. Pickett, D.A. Ohlberg, D.R. Stewart, C.N. Lau et al., The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)CrossRefGoogle Scholar
  29. 29.
    D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716–123716-8 (2008)Google Scholar
  30. 30.
    I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Liu, H. Cheng, X. Zhu, G. Wang, N. Wang, Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces. 5, 11258–11264 (2013)CrossRefGoogle Scholar
  32. 32.
    D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang et al., Programmable metallization cells based on amorphous La 0.79 Sr 0.21 MnO3 thin films for memory applications. J. Alloy. Compd. 580, 354–357 (2013)CrossRefGoogle Scholar
  33. 33.
    D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang et al., Nonvolatile bipolar resistive switching in amorphous Sr-doped LaMnO3 thin films deposited by radio frequency magnetron sputtering. Appl. Phys. Lett. 102, 134105 (2013)CrossRefGoogle Scholar
  34. 34.
    R. Waser, Nanoelectronics and Information Technology. (Wiley, New Jersey, 2012)Google Scholar
  35. 35.
    W. Lu, D.S. Jeong, M. Kozicki, R. Waser, Electrochemical metallization cells—blending nanoionics into nanoelectronics? MRS Bull. 37, 124–130 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Maikap, S. Rahaman, Bipolar resistive switching memory characteristics using Al/Cu/GeOx/W memristor. ECS Trans. 45, 257–261 (2012)CrossRefGoogle Scholar
  37. 37.
    B. Medasani, M. Haranczyk, A. Canning, M. Asta, Vacancy formation energies in metals: A comparison of MetaGGA with LDA and GGA exchange–correlation functionals. Comput. Mater. Sci. 101, 96–107 (2015)CrossRefGoogle Scholar
  38. 38.
    D. Strukov, F. Alibart, R. Stanley Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012)Google Scholar
  39. 39.
    C. Cagli, F. Nardi, D. Ielmini, Modeling of set/reset operations in NiO-based resistive-switching memory DEVICES. Electron Devices, IEEE Trans. 56, 1712–1720 (2009)CrossRefGoogle Scholar
  40. 40.
    Daniele Ielmini, Federico Nardi, Carlo Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58, 3246–3253 (2011)CrossRefGoogle Scholar
  41. 41.
    T. Tohru, T. Kazuya, H. Tsuyoshi, A. Masakazu, Temperature effects on the switching kinetics of a Cu–Ta2O5 -based atomic switch. Nanotechnology 22, 254013 (2011)CrossRefGoogle Scholar
  42. 42.
    W. Guan, M. Liu, S. Long, Q. Liu, W. Wang, On the resistive switching mechanisms of Cu/ZrO2: Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)CrossRefGoogle Scholar
  43. 43.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)CrossRefGoogle Scholar
  44. 44.
    T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007)CrossRefGoogle Scholar
  45. 45.
    M. Kund, G. Beitel, C.U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk et al., Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 754–757Google Scholar
  46. 46.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Colossal electro-resistance memory effect at metal/La2CuO4 interfaces. Jpn. J. Appl. Phys. 44, L1241 (2005)CrossRefGoogle Scholar
  47. 47.
    Z. Liao, Z. Wang, Y. Meng, Z. Liu, P. Gao, J. Gang et al., Categorization of resistive switching of metal-Pr0. 7Ca0. 3MnO3-metal devices. Appl. Phys. Lett. 94, 253503 (2009)CrossRefGoogle Scholar
  48. 48.
    B. Gao, S. Yu, N. Xu, L. Liu, B. Sun, X. Liu et al., Oxide-based RRAM switching mechanism: A new ion-transport-recombination model, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4Google Scholar
  49. 49.
    S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu et al., Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotech. Lett. 6, 729–757 (2014)CrossRefGoogle Scholar
  50. 50.
    F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan et al., Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011)CrossRefGoogle Scholar
  51. 51.
    M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart et al., Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106 (2009)Google Scholar
  52. 52.
    S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Func. Mater. 21, 4487–4492 (2011)CrossRefGoogle Scholar
  53. 53.
    D. Strukov, R.S. Williams, Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)Google Scholar
  54. 54.
    D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt∕TiO2∕Pt stack. Electrochem. Solid-State Lett. 10, G51–G53 (2007)CrossRefGoogle Scholar
  55. 55.
    K.-L. Lin, T.-H. Hou, J. Shieh, J.-H. Lin, C.-T. Chou, Y.-J. Lee, Electrode dependence of filament formation in HfO2 resistive-switching memory. J. Appl. Phys. 109, 084104 (2011)CrossRefGoogle Scholar
  56. 56.
    X. Wu, K. Pey, G. Zhang, P. Bai, X. Li, W. Liu et al., Electrode material dependent breakdown and recovery in advanced high-κ gate stacks. Appl. Phys. Lett. 96, 202903–202903-3 (2010)Google Scholar
  57. 57.
    C. Walczyk, C. Wenger, D. Walczyk, M. Lukosius, I. Costina, M. Fraschke, et al., On the role of Ti adlayers for resistive switching in HfO2-based metal-insulator-metal structures: Top versus bottom electrode integration. J. Vac. Sci. Tech. B: Microelectron. Nanometer Struct. 29, 01AD02–01AD02-7 (2011)Google Scholar
  58. 58.
    D.B. Strukov, R.S. Williams, An ionic bottle for high-speed, long-retention memristive devices. Appl. Phys. A-Mater. Sci. Process. 102, 1033–1036 (2011)CrossRefGoogle Scholar
  59. 59.
    M. Noman, W.K. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A-Mater. Sci. Process. 102, 877–883 (2011)CrossRefGoogle Scholar
  60. 60.
    L.F. Zagonel, M. Bäurer, A. Bailly, O. Renault, M. Hoffmann, S.J. Shih, N. Barrett, Orientation-dependent work function of in situ annealed strontium titanate. J. Phys.: Condens. Matter 21(31), 314013 (2009)Google Scholar
  61. 61.
    D. Tsiplakides, C.G. Vayenas, Electrode work function and absolute potential scale in solid-state electrochemistry. J Electrochem. Soc. 148, E189–E202 (2001)Google Scholar
  62. 62.
    J. Schaeffer, S. Samavedem, L. Fonseca, C. Capasso, O. Odetutu, D. Gilmer et al., Investigation of metal gate electrodes on Hfo2 gate dielectrics. Mat. Res. Soc. Symp. Proc. 811D, 1.1 (2004)Google Scholar
  63. 63.
    M.T. Greiner, Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5, e55 (2013)CrossRefGoogle Scholar
  64. 64.
    W.M. Haynes, CRC handbook of chemistry and physics, 95th edn. (CRC press, Florida, 2013), p. 124Google Scholar
  65. 65.
    R. Fujii, Y. Gotoh, M. Liao, H. Tsuji, J. Ishikawa, Work function measurement of transition metal nitride and carbide thin films. Vacuum 80, 832–835 (2006)CrossRefGoogle Scholar
  66. 66.
    C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix et al., Experimental and theoretical study of electrode effects in HfO2 based RRAM, in Electron Devices Meeting (IEDM), 2011 IEEE International (2011), pp. 28.7. 1–28.7. 4Google Scholar
  67. 67.
    L. Goux, X.P. Wang, Y. Chen, L. Pantisano, N. Jossart, B. Govoreanu et al., Roles and effects of TiN and Pt electrodes in resistive-switching HfO2 systems. Electrochem. Solid-State Lett. 14, H244–H246 (2011)CrossRefGoogle Scholar
  68. 68.
    N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang et al., Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories. Appl. Phys. Lett. 92, 232112 (2008)CrossRefGoogle Scholar
  69. 69.
    Z. Fang, H. Yu, W. Liu, Z. Wang, X. Tran, B. Gao et al., Temperature instability of resistive switching on-based RRAM devices. Electron Device Lett. IEEE 31, 476–478 (2010)CrossRefGoogle Scholar
  70. 70.
    S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin, Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films. Appl. Phys. Lett. 95, 112904 (2009)CrossRefGoogle Scholar
  71. 71.
    C.-Y. Lin, S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J. Electrochem. Soc. 155, H615–H619 (2008)CrossRefGoogle Scholar
  72. 72.
    L. Goux, Y.-Y. Chen, L. Pantisano, X.-P. Wang, G. Groeseneken, M. Jurczak et al., On the gradual unipolar and bipolar resistive switching of TiN HfO2 Pt memory systems. Electrochem. Solid-State Lett. 13, G54–G56 (2010)CrossRefGoogle Scholar
  73. 73.
    H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, C.H. Lin et al., Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory. Appl. Phys. Lett. 92, 142911–142911-3 (2008)Google Scholar
  74. 74.
    Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan et al., Real-Time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)CrossRefGoogle Scholar
  75. 75.
    A. Kumar, M. Baghini, Experimental study for selection of electrode material for ZnO-based memristors. Electron. Lett. 50, 1547–1549 (2014)CrossRefGoogle Scholar
  76. 76.
    H.Y. Peng, G.P. Li, J.Y. Ye, Z.P. Wei, Z. Zhang, D.D. Wang et al., Electrode dependence of resistive switching in Mn-doped ZnO: filamentary versus interfacial mechanisms. Appl. Phys. Lett. 96, 192113 (2010)CrossRefGoogle Scholar
  77. 77.
    S. Seo, M.J. Lee, D.H. Seo, S.K. Choi, D.-S. Suh, Y.S. Joung et al., Conductivity switching characteristics and reset currents in NiO films. Appl. Phys. Lett. 86, 093509 (2005)CrossRefGoogle Scholar
  78. 78.
    L. Courtade, C. Turquat, C. Muller, J.G. Lisoni, L. Goux, D.J. Wouters, Improvement of resistance switching characteristics in NiO films obtained from controlled Ni oxidation, in Non-Volatile Memory Technology Symposium, 2007. NVMTS ‘07 ‘(2007), pp. 1–4Google Scholar
  79. 79.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)CrossRefGoogle Scholar
  80. 80.
    F. Pan, C. Chen, Z.-S. Wang, Y.-C. Yang, J. Yang, F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 20, 1–15 (2010)CrossRefGoogle Scholar
  81. 81.
    K. Kentaro, T. Tetsuro, A. Masaki, S. Yoshihiro, T. Hitoshi, Lowering the switching current of resistance random access memory using a hetero junction structure consisting of transition metal oxides. Jpn. J. Appl. Phys. 45, L991 (2006)CrossRefGoogle Scholar
  82. 82.
    S.E. Ahn, M.J. Lee, Y. Park, B.S. Kang, C.B. Lee, K.H. Kim et al., Write current reduction in transition metal oxide based resistance change memory. Adv. Mater. 20, 924–928 (2008)CrossRefGoogle Scholar
  83. 83.
    E. Filatova, A. Baraban, A. Konashuk, M. Konyushenko, A. Selivanov, A. Sokolov et al., Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/TiO2/TCO/metal assemblies. New J. Phys. 16, 113014 (2014)CrossRefGoogle Scholar
  84. 84.
    H. Lee, Y. Chen, P. Chen, T. Wu, F. Chen, C. Wang et al., Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin Ti cap. IEEE Electron Device Lett. 31, 44–46 (2010)CrossRefGoogle Scholar
  85. 85.
    H.Y. Lee, P.-S. Chen, T.-Y. Wu, Y.S. Chen, F. Chen, C.-C. Wang et al., Bipolar resistive memory with robust endurance using AlCu as buffer electrode. Electron Device Lett. IEEE 30, 703–705 (2009)CrossRefGoogle Scholar
  86. 86.
    Y. Chen, G. Pourtois, X.P. Wang, C. Adelmann, L. Goux, B. Govoreanu et al., Switching by Ni filaments in a HfO2 matrix: a new pathway to improved unipolar switching RRAM, in 2011 3rd IEEE International Memory Workshop (IMW) (2011), pp. 1–4Google Scholar
  87. 87.
    H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng et al., Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International (2008), pp. 1–4Google Scholar
  88. 88.
    Y. Hou, B. Chen, B. Gao, Z. Lun, Z. Xin, R. Liu et al., Self-compliance multilevel resistive switching characteristics in TiN/HfOx/Al/Pt RRAM devices, in Electron Devices and Solid-State Circuits (EDSSC), 2013 IEEE International Conference of (2013), pp. 1–2Google Scholar
  89. 89.
    H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I.H. Inque et al., Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93, 113504 (2008)CrossRefGoogle Scholar
  90. 90.
    H. Kim, P.C. McIntyre, C. On Chui, K.C. Saraswat, S. Stemmer, Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer. J. Appl. Phys. 96, 3467–3472 (2004)CrossRefGoogle Scholar
  91. 91.
    C.-C. Li, K.-S. Chang-Liao, Y.-C. Chen, C.-H. Fu, L.-J. Liu, T.-K. Wang, Effects of oxygen content and capping metal layer on bipolar switching properties of HfO2-based resistive random access memory devices, in Semiconductor Device Research Symposium (ISDRS), 2011 International (2011), pp. 1–2Google Scholar
  92. 92.
    X.P. Wang, Y.Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken et al., Effect of anodic interface layers on the unipolar switching of HfO2-based resistive RAM, in VLSI Technology Systems and Applications (VLSI-TSA), 2010 International Symposium on (2010), pp. 140–141Google Scholar
  93. 93.
    J.J. Yang, M. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley et al., High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)CrossRefGoogle Scholar
  94. 94.
    S. Brivio, G. Tallarida, D. Perego, S. Franz, D. Deleruyelle, C. Muller et al., Low-power resistive switching in Au/NiO/Au nanowire arrays. Appl. Phys. Lett. 101, 223510 (2012)CrossRefGoogle Scholar
  95. 95.
    R. Zhang, S.U. Yuldashev, J. Lee, V.S. Yalishev, T. Kang, D. Fu, Memristive behavior of ZnO/NiO stacked heterostructure. Microelectron. Eng. 112, 31–34 (2013)CrossRefGoogle Scholar
  96. 96.
    Y.H. Do, J.S. Kwak, Y.C. Bae, J.H. Lee, Y. Kim, H. Im et al., TiN electrode-induced bipolar resistive switching of TiO2 thin films. Curr. Appl. Phys. 10, e71–e74 (2010)CrossRefGoogle Scholar
  97. 97.
    Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang et al., Study of conduction and switching mechanisms in Al/AlOx/WOx/W resistive switching memory for multilevel applications. Appl. Phys. Lett. 102, 233502 (2013)CrossRefGoogle Scholar
  98. 98.
    M. Liu, W. Guan, S. Long, Q. Liu, W. Wang, Excellent resistive switching characteristics of Cu doped ZrO2 and its 64 bit cross-point integration, in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, 2008, pp. 905–908Google Scholar
  99. 99.
    S.M. Hong, H.-D. Kim, M.J. Yun, J.H. Park, D.S. Jeon, T.G. Kim, Improved resistive switching properties by nitrogen doping in tungsten oxide thin films. Thin Solid Films (2015)Google Scholar
  100. 100.
    L. Chen, Y.-W. Dai, Q.-Q. Sun, J.-J. Guo, P. Zhou, D.W. Zhang, Al2O3/HfO2 functional stack films based resistive switching memories with controlled SET and RESET voltages. Solid State Ionics 273, 66–69 (2015)CrossRefGoogle Scholar
  101. 101.
    T. Yan Zhe, F. Zheng, W. Xin Peng, W. Bao Bin, C. Zhi Xian, L. Guo Qiang, A novel RRAM stack with double-switching-layer configuration showing low operation current through complimentary switching of back-to-back connected subcells. Electron Device Lett. IEEE 35, 627–629 (2014)Google Scholar
  102. 102.
    B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini et al., 10 × 10 nm2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation, in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 31.6. 1–31.6. 4Google Scholar
  103. 103.
    J.Y. Son, Y.-H. Shin, H. Kim, H.M. Jang, NiO resistive random access memory nanocapacitor array on graphene. ACS Nano 4, 2655–2658 (2010)CrossRefGoogle Scholar
  104. 104.
    Y. Yang, X. Zhang, M. Gao, F. Zeng, W. Zhou, S. Xie et al., Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale 3, 1917–1921 (2011)CrossRefGoogle Scholar
  105. 105.
    C. Chen, Y. Yang, F. Zeng, F. Pan, Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 97, 083502 (2010)CrossRefGoogle Scholar
  106. 106.
    Z. Yang, C. Ko, S. Ramanathan, Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011)CrossRefGoogle Scholar
  107. 107.
    S. Hu, S. Wu, W. Jia, Q. Yu, L. Deng, Y. Fu et al., Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotechnol. Lett. 6, 729–757 (2014)CrossRefGoogle Scholar
  108. 108.
    F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R: Rep. 83, 1–59 (2014)CrossRefGoogle Scholar
  109. 109.
    D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)CrossRefGoogle Scholar
  110. 110.
    S. Seo, M. Lee, D. Seo, E. Jeoung, D.-S. Suh, Y. Joung et al., Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85, 5655–5657 (2004)CrossRefGoogle Scholar
  111. 111.
    E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, Aluminium electrodes effect the operation of titanium oxide sol-gel memristors, N/A (2011)Google Scholar
  112. 112.
    International Technology Roadmap for Semiconductors (2013 Edition). Available:
  113. 113.
    T.A. Wey, W.D. Jemison, Variable gain amplifier circuit using titanium dioxide memristors. IET Circ. Devices Syst. 5, 59–65 (2011)CrossRefGoogle Scholar
  114. 114.
    D. Varghese, G. Gandhi, Memristor based high linear range differential pair, in Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on (2009), pp. 935–938Google Scholar
  115. 115.
    Y. Halawani, B. Mohammad, M. Al-Qutayri, H. Saleh, Memory impact on the lifetime of a wireless sensor node using a semi-markov model, in Circuits and Systems (ISCAS), 2015 IEEE International Symposium on (2015), pp. 1470–1473Google Scholar
  116. 116.
    K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi et al., Memristive device fundamentals and modeling: applications to circuits and systems simulation. Proc. IEEE 100, 1991–2007 (2012)CrossRefGoogle Scholar
  117. 117.
    O. Kavehei, K.R. Cho, S.J. Lee, S. Al-Sarawi, K. Eshraghian, D. Abbott, Integrated memristor-MOS (M2) sensor for basic pattern matching applications. J. Nanosci. Nanotechnol. 13, 3638–3640 (2013)CrossRefGoogle Scholar
  118. 118.
    R. Berdan, T. Prodromakis, I. Salaoru, A. Khiat, C. Toumazou, Memristive devices as parameter setting elements in programmable gain amplifiers. Appl. Phys. Lett. 101 (2012)Google Scholar
  119. 119.
    S. Hamdioui, L. Xie, H.A.D. Nguyen, M. Taouil, K. Bertels, H. Corporaal et al., Memristor based computation-in-memory architecture for data-intensive applications. Presented at the Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2015Google Scholar
  120. 120.
    H.A.D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, K. Bertels, Computation-in-memory based parallel adder, in Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International Symposium on (2015), pp. 57–62Google Scholar
  121. 121.
    W. Wang, T.T. Jing, B. Butcher, FPGA based on integration of memristors and CMOS devices, in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on (2010), pp. 1963–1966 Google Scholar
  122. 122.
    J. Cong, B. Xiao, mrFPGA: A novel FPGA architecture with memristor-based reconfiguration, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2011, pp. 1–8 (2011)Google Scholar
  123. 123.
    D. Kuzum, S. Yu, H.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013)CrossRefGoogle Scholar
  124. 124.
    M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)CrossRefGoogle Scholar
  125. 125.
    S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013)CrossRefGoogle Scholar
  126. 126.
    B. Mohammad, M.A. Jaoude, V. Kumar, D.M. Al Homouz, H.A. Nahla, M. Al-Qutayri, N. Christoforou, State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5(3), 311–329 (2016)CrossRefGoogle Scholar
  127. 127.
    H. WM, “CRC Handbook of Chemistry and Physics,” 95th edn. (CRC press, Boca Raton, 2013), p. 124Google Scholar
  128. 128.
    N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, K.H. Choi, Fabrication of printed memory device having zinc-oxide active nano-layer and investigation of resistive switching. Curr. Appl. Phys. 13, 90–96 (2013)CrossRefGoogle Scholar
  129. 129.
    F.-C. Chiu, Resistance switching characteristics in ZnO-based nonvolatile memory devices. Adv. Mater. Sci. Eng. 2013 (2013)Google Scholar
  130. 130.
    J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett et al., Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123–125 (2011)Google Scholar
  131. 131.
    J.H. Nickel, J.P. Strachan, M.D. Pickett, C.T. Schamp, J.J. Yang, J.A. Graham et al., Memristor structures for high scalability: Non-linear and symmetric devices utilizing fabrication friendly materials and processes. Microelectron. Eng. 103, 66–69 (2013)CrossRefGoogle Scholar
  132. 132.
    S. Kim, H.Y. Jeong, S.K. Kim, S.Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)CrossRefGoogle Scholar
  133. 133.
    S. Wu, L. Ren, J. Qing, F. Yu, K. Yang, M. Yang et al., Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors. ACS Appl. Mater. Interfaces. 6, 8575–8579 (2014)CrossRefGoogle Scholar
  134. 134.
    Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism, in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1–4Google Scholar
  135. 135.
    C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure. Appl. Phys. Lett. 100, 253509 (2012)CrossRefGoogle Scholar
  136. 136.
    K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.-S. Kim et al., Spatial nonuniformity in resistive-switching memory effects of NiO. J. Am. Chem. Soc. 133, 12482–12485 (2011)CrossRefGoogle Scholar
  137. 137.
    M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, K.H. Choi, Fabrication of ZrO2 layer through electrohydrodynamic atomization for the printed resistive switch (memristor). Microelectron. Eng. 103, 167–172 (2013)CrossRefGoogle Scholar
  138. 138.
    M.N. Awais, H.C. Kim, Y.H. Doh, K.H. Choi, ZrO2 flexible printed resistive (memristive) switch through electrohydrodynamic printing process. Thin Solid Films 536, 308–312 (2013)CrossRefGoogle Scholar
  139. 139.
    B. Sun, Y. Liu, L. Liu, N. Xu, Y. Wang, X. Liu et al. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices. J. Appl. Phys. 105, 061630–061630-4 (2009)Google Scholar
  140. 140.
    A. Younis, D. Chu, C.M. Li, T. Das, S. Sehar, M. Manefield et al., Interface thermodynamic state-induced high-performance memristors. Langmuir 30, 1183–1189 (2014)CrossRefGoogle Scholar
  141. 141.
    Y. Wu, Y. Chai, H.-Y. Chen, S. Yu, H.-S. Wong, Resistive switching AlOx-based memory with CNT electrode for ultra-low switching current and high density memory application, in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 26–27Google Scholar
  142. 142.
    A. Sleiman, P. Sayers, M. Mabrook, Mechanism of resistive switching in Cu/AlOx/W nonvolatile memory structures. J. Appl. Phys. 113, 164506 (2013)CrossRefGoogle Scholar
  143. 143.
    C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, C. Hu, T.-Y. Tseng, Bistable resistive switching in Al2O3 memory thin films. J. Electrochem. Soc. 154, G189–G192 (2007)CrossRefGoogle Scholar
  144. 144.
    P. Hu, X. Li, J. Lu, M. Yang, Q. Lv, S. Li, Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys. Lett. A 375, 1898–1902 (2011)CrossRefGoogle Scholar
  145. 145.
    D. Jana, M. Dutta, S. Samanta, S. Maikap, RRAM characteristics using a new Cr/GdOx/TiN structure. Nanoscale Res. Lett. 9, 680 (2014)CrossRefGoogle Scholar
  146. 146.
    M.K. Yang, J.-W. Park, T.K. Ko, and J.-K. Lee, Bipolar resistive switching behavior in Ti/MnO 2/Pt structure for nonvolatile memory devices. Appl. Phys. Lett. 95, 042105–042105-3 (2009)Google Scholar
  147. 147.
    C. Schindler, S.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)CrossRefGoogle Scholar
  148. 148.
    C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO1–x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6, 8407–8414 (2012)CrossRefGoogle Scholar
  149. 149.
    S.-M. Lin, J.-S. Huang, W.-C. Chang, T.-C. Hou, H.-W. Huang, C.-H. Huang et al., Single-step formation of ZnO/ZnWO x bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states. ACS Appl. Mater. Interfaces. 5, 7831–7837 (2013)CrossRefGoogle Scholar
  150. 150.
    S. Murali, J.S. Rajachidambaram, S.-Y. Han, C.-H. Chang, G.S. Herman, J.F. Conley, Resistive switching in zinc–tin-oxide. Solid-State Electron. 79, 248–252 (2013)CrossRefGoogle Scholar
  151. 151.
    A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino et al., Non-volatile resistive switching for advanced memory applications, in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 746–749Google Scholar
  152. 152.
    L. Chen, Y. Xu, Q.-Q. Sun, P. Zhou, P.-F. Wang, S.-J. Ding et al., Atomic-layer-deposited HfLaO-based resistive switching memories with superior performance. Electron Device Lett. IEEE 31, 1296–1298 (2010)Google Scholar
  153. 153.
    T. Yanagida, Memristive switching phenomena in a single oxide nanowire, in Nanotechnology Materials and Devices Conference (NMDC), 2011 IEEE, 2011, pp. 28–31Google Scholar
  154. 154.
    Y.-E. Syu, T.-C. Chang, T.-M. Tsai, G.-W. Chang, K.-C. Chang, Y.-H. Tai et al., Silicon introduced effect on resistive switching characteristics of WOX thin films. Appl. Phys. Lett. 100, 022904 (2012)CrossRefGoogle Scholar
  155. 155.
    Y.-E. Syu, R. Zhang, T.-C. Chang, T.-M. Tsai, K.-C. Chang, J.-C. Lou et al., Endurance improvement technology with nitrogen implanted in the interface of resistance switching device. Electron Device Lett. IEEE 34, 864–866 (2013)CrossRefGoogle Scholar
  156. 156.
    B.J. Choi, A.C. Torrezan, K.J. Norris, F. Miao, J.P. Strachan, M.-X. Zhang et al., Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Lett. 13, 3213–3217 (2013)CrossRefGoogle Scholar
  157. 157.
    T. Tan, T. Guo, X. Chen, X. Li, Z. Liu, Impacts of Au-doping on the performance of Cu/HfO 2/Pt RRAM devices. Appl. Surf. Sci. 317, 982–985 (2014)CrossRefGoogle Scholar
  158. 158.
    T. Guo, T. Tan, Z. Liu, Enhanced resistive switching behaviors of HfO2: Cu film with annealing process, Vacuum (2015)Google Scholar
  159. 159.
    S. Chakrabarti, D. Jana, M. Dutta, S. Maikap, Y.-Y. Chen, J.-R. Yang, Impact of AlO x interfacial layer and switching mechanism in W/AlO x/TaO x/TiN RRAMs, in Memory Workshop (IMW), 2014 IEEE 6th International, 2014, pp. 1–4Google Scholar
  160. 160.
    J.S. Kwak, Y.H. Do, Y.C. Bae, H. Im, J.P. Hong, Reproducible unipolar resistive switching behaviors in the metal-deficient CoO x thin film. Thin Solid Films 518, 6437–6440 (2010)CrossRefGoogle Scholar
  161. 161.
    X. Gao, H. Guo, Y. Xia, J. Yin, Z. Liu, Unipolar resistive switching characteristics in Co3O4 films. Thin Solid Films 519, 450–452 (2010)CrossRefGoogle Scholar
  162. 162.
    H. Lv, M. Yin, Y. Song, X. Fu, L. Tang, P. Zhou et al., Forming process investigation of Cu x O memory films. Electron Device Lett. IEEE 29, 47–49 (2008)CrossRefGoogle Scholar
  163. 163.
    K.-C. Liu, W.-H. Tzeng, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, C.-W. Cheng, The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device. Microelectron. Reliab. 50, 670–673 (2010)CrossRefGoogle Scholar
  164. 164.
    I. Baek, M. Lee, S. Seo, M.-J. Lee, D. Seo, D.-S. Suh et al., Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004, pp. 587–590Google Scholar
  165. 165.
    K. Nagashima, T. Yanagida, K. Oka, T. Kawai, Unipolar resistive switching characteristics of room temperature grown SnO2 thin films. Appl. Phys. Lett. 94, 242902 (2009)CrossRefGoogle Scholar
  166. 166.
    W. Chien, Y. Chen, E. Lai, Y. Yao, P. Lin, S. Horng et al., Unipolar switching behaviors of RTO RRAM. Electron Device Lett. IEEE 31, 126–128 (2010)CrossRefGoogle Scholar
  167. 167.
    C.Y. Huang, U. Chand, T.Y. Tseng, Improvement of unipolar resistive switching characteristics in Ti embedded ZrO2 thin film. Appl. Mech. Mater. 543, 3839–3842 (2014)CrossRefGoogle Scholar
  168. 168.
    S. Liu, N. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000)CrossRefGoogle Scholar
  169. 169.
    M. Quintero, P. Levy, A. Leyva, M. Rozenberg, Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98, 116601 (2007)CrossRefGoogle Scholar
  170. 170.
    D. Ielmini, F. Nardi, S. Balatti, Evidence for voltage-driven set/reset processes in bipolar switching RRAM. Electron Devices, IEEE Trans. 59, 2049–2056 (2012)CrossRefGoogle Scholar
  171. 171.
    V.Z. Victor, M. Roy, K.C. Ralph, S. Gurtej, Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011)CrossRefGoogle Scholar
  172. 172.
    D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M.-J. Lee et al., Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. Electron Device Lett. IEEE 26, 719–721 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Khalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations