Bone and Vertebrate Bodies as Uniformitarian Materials

  • Diane Gifford-Gonzalez


As stipulated in Chapter 3, contemporary observations are a rich source of knowledge about functional properties of the animal remains that zooarchaeologists study. This chapter reviews intrinsic properties of bone as a living tissue, which exist because of the evolutionary histories and specific life circumstances of individual vertebrates. Zooarchaeologists can use such inherent features to infer the age, sex, season of death of an animal, and to understand peri- and postmortem modifications to skeletal elements. This chapter outlines the origins and histology of bone tissue, bone tissue micro-architecture, macroscopic structural variants, and shape-based bone classifications, as well as pathways of bone growth and development. It briefly describes the histology of teeth and their growth and morphology in mammals. A knowledge of these traits of living organisms permits a more systematic understanding of those qualities of animal bodies that attract humans and strongly determine the condition of archaeofaunal specimens.


Bone Teeth Histology Bone constituents Ultrastructure Ossification 


  1. Barlet, J. P., Coxam, V., & Davicco, M. J. (1995). Physical activity and the skeleton. Archives of Physiology and Biochemistry, 103(6), 681–698.CrossRefGoogle Scholar
  2. Baron, R. (1993). Anatomy and ultrastructure of bones. In M. J. Favus (Ed.), Primer on the metabolic bone diseases and disorders of mineral metabolism (2nd ed., pp. 3–9). New York: Raven Press.Google Scholar
  3. Blair, H. C., Zaidi, M., & Schlesinger, P. H. (2002). Mechanisms balancing skeletal matrix synthesis and degradation. Biochemical Journal, 364(Pt2), 329–341.CrossRefGoogle Scholar
  4. Carlson, S. J. (1990). Vertebrate dental structures. In J. G. Carter (Ed.), Skeletal biomineralization: Patterns, processes and evolutionary trends (pp. 531–556). New York: van Nostrand Reinhold.Google Scholar
  5. Chan, G. K., & Duque, G. (2002). Age-related bone loss: Old bone, new facts. Gerontology, 48(2), 62–71.CrossRefGoogle Scholar
  6. Chaplin, R. E. (1971). The study of animal bones from archaeological sites. New York: Seminar Press.Google Scholar
  7. Corsi, A., Xu, T., Chen, X. D., Boyde, A., Liang, J., Mankani, M., et al. (2002). Phenotypic effects of biglycan deficiency, are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. Journal of Bone and Mineral Research, 17(7), 1180-1189, doi:10.1359/jbmr.2002.17.7.1180.Google Scholar
  8. Cuijpers, A. G. F. M. (2006). Histological identification of bone fragments in archaeology: Telling humans apart from horses and cattle. International Journal of Osteoarchaeology, 16(6), 465–480.CrossRefGoogle Scholar
  9. Cuijpers, S., & Lauwerier, R. C. G. M. (2008). Differentiating between bone fragments from horses and cattle: A histological identification method for archaeology. Environmental Archaeology, 13(2), 165–179.CrossRefGoogle Scholar
  10. Forwood, M. R., Owan, I., Takano, Y., & Turner, C. H. (1996). Increased bone formation in rat tibiae after a single short period of dynamic loading in vivo. American Journal of Physiology – Endocrinology and Metabolism, 270(3), E419–E423.CrossRefGoogle Scholar
  11. Galloway, A. (1997). The cost of reproduction and the evolution of postmenopausal osteoporosis. In M. E. Morbeck, A. Galloway, & A. Zihlman (Eds.), The evolving female: A life history perspective (pp. 132–146). Princeton: Princeton University Press.Google Scholar
  12. Jones, T. C., & Howat, P. M. (2002). The effect of diet/supplement intake and competitive activity on bone mineral density of collegiate females. The Federation of American Societies for Experimental Biology Journal, 16(4), A629.Google Scholar
  13. Jones, H. H., Priest, J. D., Hayes, W. C., Tichenor, C. C., & Nagel, D. A. (1977). Humeral hypertrophy in response to exercise. Journal of Bone and Joint Surgery, 59-A, 204–208.CrossRefGoogle Scholar
  14. Lipson, S. F., & Katz, J. L. (1984). The relationship between elastic properties and microstructure of bovine cortical bone. Journal of Biomechanics, 17(4), 231–235,237-240.CrossRefGoogle Scholar
  15. Liu, B.-Y., Wu, P.-W., Hsu, Y.-T., Leu, J.-S., & Wang, J.-T. (2002). Estrogen blocks parathyroid hormone-stimulated osteoclast-like cell formation in modulating differentiation of mouse marrow stromal cells in vitro. Journal of the Formosan Medical Association, 101(1), 24–33.Google Scholar
  16. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  17. MacGregor, A. (1985). Bone, antler, ivory, and horn: The technology of skeletal materials since the Roman period. Totowa: Barnes & Noble.Google Scholar
  18. Martiniakova, M., Grosskopf, B., Omelka, R., Vondrakova, M., & Bauerova, M. (2006). Differences among species in compact bone tissue microstructure of mammalian skeleton: Use of a discriminant function analysis for species identification. Journal of Forensic Sciences, 51(6), 1235–1239.CrossRefGoogle Scholar
  19. Richter, J. (1986). Experimental study of heat induced morphological changes in fish bone collagen. Journal of Archaeological Science, 13(5), 477–481.CrossRefGoogle Scholar
  20. Ruangwit, U. (1967). The split-line phenomenon and the microscopic structure of bone. American Journal of Physical Anthropology, 26(3), 319–329.CrossRefGoogle Scholar
  21. Ruscillo, D. (Ed.). (2006). Recent advances in ageing and sexing animal bones. Oxford: Oxbow Books.Google Scholar
  22. Silver, I. A. (1963). The ageing of domestic animals. In D. R. Brothwell & E. Higgs (Eds.), Science in archaeology: A comprehensive survey of the progress and research (pp. 283–302). New York: Praeger.Google Scholar
  23. Stiner, M. C., Kuhn, S. L., Weiner, S., & Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 22(2), 223–237.CrossRefGoogle Scholar
  24. Tanner, J. M. (1990). Fetus into man. Physical growth from conception to maturity (Revised ed.). Cambridge: Harvard University Press.Google Scholar
  25. Tappen, N. C., & Peske, G. R. (1970). Weathering cracks and split-line patterns in archaeological bone. American Antiquity, 35(3), 383–386.CrossRefGoogle Scholar
  26. Taylor, R. E., Hare, P. E., & White, T. D. (1995). Geochemical criteria for thermal alteration of bone. Journal of Archaeological Science, 22(1), 115–119.CrossRefGoogle Scholar
  27. Termine, J. D. (1993). Bone matrix proteins and the mineralization process. In M. J. Favus (Ed.), Primer on the metabolic bones diseases and disorders of mineral metabolism (2nd ed., pp. 21–25). New York: Raven Press.Google Scholar
  28. Zococo, T. G., & Schwartz, H. (1994). Microstructural analysis of bone of the sauropod dinosaur Seismosaurus by transmission electron microscopy. Paleontology, 37(3), 493–503.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations