Calibrating Bone Durability

  • Diane Gifford-Gonzalez
Chapter

Abstract

This chapter explores the disparate durabilities of different skeletal elements in the face of destructive forces. Such attrition differentially affects element survival across the skeleton and thus at least potentially inserts a confounding effect into any analysis of human selectivity based upon nutritional utility. The chapter describes efforts to calibrate variations in skeletal element durability over the last 40 years, focusing on the use of biomedical equipment that measure bone mineral densities. It reviews pioneering studies of bone “volume densities” using photon densitometry and its application to diverse taxa. It summarizes questions emerging about bone mineral estimates drawn this two-dimensionally based technique and discusses the later application of CTscan technology to calibrating bone mineral density, as well as sources of divergence in these two techniques’ measurements. This chapter also explains how zooarchaeologists have juxtaposed bone durability measures with nutritional utility indices to explore the dominant processes involved in forming archaeofaunal accumulations. The chapter discusses simulation study of the potential consequences of limiting assemblage analysis to fewer, high-durability skeletal elements and ends with a consideration of element frequencies in relation to other proxies for modifying processes, such as surface modifications.

Keywords

Taphonomy Preservation Attrition Photon densitometer CTscan BMD 

References

  1. Bar-Oz, G., & Dayan, T. (2007). FOCUS: On the use of the petrous bone for estimating cranial abundance in fossil assemblages. Journal of Archaeological Science, 34(9), 1356–1360.CrossRefGoogle Scholar
  2. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolph, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
  3. Binford, L. R., & Bertram, J. (1977). Bone frequencies -- and attritional processes. In L. R. Binford (Ed.), For theory building in archaeology: Essays on faunal remains, aquatic resources, spatial analysis, and systemic modeling (pp. 77–153). New York: Academic Press.Google Scholar
  4. Binford, L. R. (1981). Bones: Ancient Men and Modern Myths. New York: Academic Press.Google Scholar
  5. Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15(5), 483–502.CrossRefGoogle Scholar
  6. Borrero, L. A. (1990). Fuego-Patagonian bone assemblages and the problem of communal guanaco hunting. In L. B. Davis, & B. O. K. Reeves (Eds.), Hunters of the recent past (pp. 373–399). London: Unwin Hyman.Google Scholar
  7. Brain, C. K. (1981). The hunters or the hunted? An introduction to South African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  8. Capaldo, S. D. (1998). Simulating the formation of dual patterned archaeofaunal assemblages with experimental control samples. Journal of Archaeological Science, 25(4), 311–330.Google Scholar
  9. Cleghorn, N., & Marean, C. W. (2004). Distinguishing selective transport from in situ attrition: A critical review of analytical approaches. Journal of Taphonomy, 2(2), 43–67.Google Scholar
  10. Cruz, I., & Elkin, D. (2003). Structural bone density of the lesser rhea (Pterocnemia pennata) (Aves: Rheidae). Taphonomic and archaeological implications. Journal of Archaeological Science, 30(1), 37–44.Google Scholar
  11. Dirrigl, F. J., Jr. (2001). Bone mineral density of wild turkey (Meleagris gallopavo) skeletal elements and its effect on differential survivorship. Journal of Archaeological Science, 28(8), 817–832.Google Scholar
  12. Egeland, A. G., Egeland, C. P., & Bunn, H. T. (2008). Taphonomic analysis of a modern spotted hyena (Crocuta crocuta) den from Nairobi, Kenya. Journal of Taphonomy, 6(3-4), 275–299.Google Scholar
  13. Elkin, D. C. (1995). Volume density of South American camelid skeletal parts. International Journal of Osteoarchaeology, 5(1), 29–37.CrossRefGoogle Scholar
  14. Emerson, A. M. (1990). Archaeological implications of variability in the economic anatomy of Bison bison. Doctoral dissertation, Washington State University, Pullman.Google Scholar
  15. Faith, J. T., & Gordon, A. D. (2007). Skeletal element abundances in archaeofaunal assemblages: Economic utility, sample size, and assessment of carcass transport strategies. Journal of Archaeological Science, 34(6), 872–882.CrossRefGoogle Scholar
  16. Galloway, A., Willey, P., & Snyder, L. (1996). Human bone mineral densities and survival of bone elements: A contemporary sample. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 295–317). Boca Raton, FL: CRC Press.Google Scholar
  17. Grayson, D. K. (1988). Danger Cave, Last Supper Cave, and Hanging Rock Shelter: The faunas (American Museum of Natural History Anthropological Papers, Vol. 66(1)). New York: American Museum of Natural History.Google Scholar
  18. Guthrie, R. D. (1967). Differential preservation and recovery of Pleistocene large mammal remains in Alaska. Journal of Paleontology, 41(1), 243–246.Google Scholar
  19. Ioannidou, E. (2003). Taphonomy of animal bones: Species, sex, age and breed variability of sheep, cattle and pig bone density. Journal of Archaeological Science, 30(3), 355–365.CrossRefGoogle Scholar
  20. Janzen, A., & Cleghorn, N. (2010). Effects of hyena ravaging on skeletal elements of large prey. Paper presented at the Society for American Archaeology, 75th annual meeting, St. Louis, MO,Google Scholar
  21. Kreutzer, L. A. (1992). Bison and deer bone mineral densities: Comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19(3), 271–294.CrossRefGoogle Scholar
  22. Kruuk, H. (1972). The spotted hyena: A study of predation and social behavior. Chicago: University of Chicago Press.Google Scholar
  23. Lam, Y. M. (1992). Variability in the behaviour of spotted hyaenas as taphonomic agents. Journal of Archaeological Science, 19(4), 389–406.CrossRefGoogle Scholar
  24. Lam, Y. M., Chen, X., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparing results from CT and photon densitometry. Journal of Archaeological Science, 25(6), 559–570.CrossRefGoogle Scholar
  25. Lam, Y. M., Chen, X., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64(2), 343–362.Google Scholar
  26. Lam, Y. M., & Pearson, O. M. (2004). The fallibility of bone density values and their use in archaeological analyses. Journal of Taphonomy, 2(2), 99–115.Google Scholar
  27. Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology: Issues, News, and Reviews, 14(3), 99–108.CrossRefGoogle Scholar
  28. Lam, Y. M., Pearson, O. M., Marean, C. W., & Chen, X. (2003). Bone density studies in zooarchaeology. Journal of Archaeological Science, 30(12), 1701–1708.CrossRefGoogle Scholar
  29. Lawrence, D. R. (1968). Taphonomy and information losses in fossil communities. Bulletin of the Geological Society of America, 79(10), 1315–1330.CrossRefGoogle Scholar
  30. Lupo, K. D. (1995). Hadza bone assemblages and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology, 14(3), 288–314.CrossRefGoogle Scholar
  31. Lyman, R. L. (1984). Bone density and differential survivorship in fossil classes. Journal of Anthropological Archaeology, 3(4), 259–299.CrossRefGoogle Scholar
  32. Lyman, R. L. (1985). Bone frequencies, differential transport, and the MGUI. Journal of Archaeological Science, 12(3), 221–236.CrossRefGoogle Scholar
  33. Lyman, R. L. (1991). Taphonomic problems with archaeological analyses animal carcass utilization and transport. In B. W. Styles, J. R. Purdue, & W. E. Klippel (Eds.), Beamers, bobwhites, and blue-points: Tributes to the career of Paul W. Parmalee, Scientific Papers (Vol. 23, pp. 125–137). Springfield, IL: Illinois State Museum.Google Scholar
  34. Lyman, R. L. (1992). Anatomical considerations of utility curves in zooarchaeology. Journal of Archaeological Science, 19(1), 7–22.CrossRefGoogle Scholar
  35. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  36. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.Google Scholar
  37. Lyman, R. L. (2014). Bone density and bone attrition. In J. T. Pokines & S. A. Symes (Eds.), Manual of forensic taphonomy (pp. 51–72). Boca Raton: CRC Press/Taylor & Francis Group.Google Scholar
  38. Lyman, R. L., Houghton, L. E., & Chambers, A. L. (1992). The effect of structural density on marmot skeletal part representation in archaeological sites. Journal of Archaeological Science, 19(5), 557–573.CrossRefGoogle Scholar
  39. Marean, C. W., Domínguez-Rodrigo, M., & Pickering, T. R. (2004). Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique.” Journal of Taphonomy, 2(2), 69–98.Google Scholar
  40. Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56(4), 645–658.Google Scholar
  41. Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19(1), 101–121.Google Scholar
  42. Metcalfe, D., & Jones, K. T. (1988). A reconsideration of animal body-part utility indices. American Antiquity, 53(3), 486–504.Google Scholar
  43. Morin, E., Ready, E., Boileau, A., Beauval, C., & Coumont, M.-P. (2016). Problems of identification and quantification in archaeozoological analysis, part I: Insights from a blind test. Journal of Archaeological Method and Theory, 1–52.  https://doi.org/10.1007/s10816-016-9300-4.
  44. O'Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1990). Reanalysis of large mammal body part transport among the Hadza. Journal of Archaeological Science, 17(3), 301–316.Google Scholar
  45. Olson, E. C. (Ed.). (1971). Vertebrate paleozoology. New York: Wiley-Interscience.Google Scholar
  46. Pavao, B., & Stahl, P. W. (1999). Structural density assays of leporid skeletal elements: Implications for taphonomic, actualistic and archaeological research. Journal of Archaeological Science, 26(1), 53–66.CrossRefGoogle Scholar
  47. Rogers, A. R. (2000). On equifinality in faunal analysis. American Antiquity, 65(4), 709–723.CrossRefGoogle Scholar
  48. Speth, J. D. (1983). Bison kills and bone counts: Decision making by ancient hunters. Chicago: University of Chicago Press.Google Scholar
  49. Stahl, P. W. (1999). Structural density of domesticated South American camelid skeletal elements and the archaeological investigation of prehistoric Andean ch’arki. Journal of Archaeological Science, 26(11), 1347–1368.Google Scholar
  50. Stiner, M. C. (2002). On in situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29(9), 979–991.Google Scholar
  51. Thomas, D. H., & Mayer, D. (1983). Behavioral faunal analysis of selected horizons. In D. H. Thomas (Ed.), The archaeology of Monitor Valley: 2. Gatecliff Shelter (pp. 353–391, Anthropological Papers of the American Museum of Natural History, (Vol. 59, Pt. 1). New York: American Museum of Natural History.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations