Analyzing Multi-Agent Assemblages

  • Diane Gifford-Gonzalez


Many archaeofaunas encountered by zooarchaeologists may bear evidence that testifies to complex post-mortem histories, so the problem of “multi-agent assemblages” is not just a concern of zooarchaeologists grappling with the who-done-it of early hominid faunal assemblages. Chapter 17 discusses untangling the primary agents of accumulation and modification in “multiagent accumulations,” where evidence for the action of more than one actor or process exists. It notes that actors and processes responsible for accumulation may not be identical with those responsible for modification. It advocates as a first step in this process listing all possible bone accumulators and modifiers and systematically eliminating some through contextual evidence, bone surface modifications and other traces on specimens, and in some cases arguing from clearly articulated, actualistically based first principles. No “recipe” for multiagent accumulation analysis exists, so to illustrate how zooarchaeologists have approached this, the chapter presents four case studies from Plio-Pleistocene and early Holocene epochs. Chapter 17 is intended to bridge between the book’s preceding section, which largely dealt with causal relations between actor and effector and their products, and the balance of the book, which addresses the use of aggregated data from archaeofaunal samples. It presents an argument that zooarchaeologists might follow paleontologists with multivariate statistical assemblage characterization and comparison and suggest the potential benefits of a Bayesian statistical approach.


Multiagent Olduvai Swartkrans Peninj Die Kelders 1 Yarimburgaz Cave Cueva—cueva 4 Quebrada Seca 3 


  1. Allison, P. A., & Briggs, D. E. G. (Eds.). (1991). Taphonomy: Releasing the data locked in the fossil record, Topics in Geobiology (Vol. 9). New York: Plenum Press.Google Scholar
  2. Behrensmeyer, A. K. (1991). Terrestrial vertebrate accumulations. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: releasing the data locked in the fossil record, Topics in Geobiology (Vol. 9, pp. 291–335). New York: Plenum Press.Google Scholar
  3. Behrensmeyer, A. K., Kidwell, S. M., & Gastaldo, R. A. (2000). Taphonomy and paleobiology. Paleobiology, 26(4, supplement), 103–147.CrossRefGoogle Scholar
  4. Bird, J. B. (1938). Antiquity and migrations of the early inhabitants of Patagonia. The Geographical Review, 28(2), 250–275.CrossRefGoogle Scholar
  5. Borrero, L. A., Martín, F. M., & Vargas, J. (2005). Tafonomía de la interacción entre pumas y guanacos en el Parque Nacional Torres del Paine, Chile. Magallania, 33(1), 95–114.CrossRefGoogle Scholar
  6. Borrero, L. A., & McEwan, C. (1997). The peopling of Patagonia: The first human occupation. In C. McEwan, L. A. Borrero, & A. Prieto (Eds.), Patagonia: Natural history, prehistory and ethnography at the uttermost end of the earth (pp. 32–45). Princeton: Princeton University Press.Google Scholar
  7. Brain, C. K. (1976). Some principles in the interpretations of bone accumulations associated with man. In G. L. Isaac & B. R. McCown (Eds.), Human origins: Louis Leakey and the East African evidence, W. A. Benjamin series in anthropology; Perspectives on Human Evolution (Vol. 3, pp. 97–116). Menlo Park CA: W. A. Benjamin.Google Scholar
  8. Brain, C. K. (1981). The hunters or the hunted? An introduction to South African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  9. Binford, L. R. (1981). Bones: Ancient Men and Modern Myths. New York: Academic Press.Google Scholar
  10. Capaldo, S. D. (1997). Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution, 33(5), 555–597.CrossRefGoogle Scholar
  11. Egeland, C. P., Rayne Pickering, T., Dominguez-Rodrigo, M., & Brain, C. K. (2004). Disentangling early stone age palimpsests: Determining the functional independence of hominid-and carnivore-derived portions of archaeofaunas. Journal of Human Evolution, 47(5), 343–357.Google Scholar
  12. Gifford-Gonzalez, D. (1989). Ethnographic analogues for interpreting modified bones: Some cases from East Africa. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 179–246). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  13. Horwitz, L. K., & Smith, P. (1988). The effects of striped hyena activity on human remains. Journal of Archaeological Science, 15(5), 471–481.CrossRefGoogle Scholar
  14. Lotan, E. (2000). Feeding the scavengers. Actualistic taphonomy in the Jordan Valley, Israel. International Journal of Osteoarchaeology, 10(6), 407–425.CrossRefGoogle Scholar
  15. Lupo, K. D. (1995). Hadza bone assemblages and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology, 14(3), 288–314.CrossRefGoogle Scholar
  16. Marean, C. W., Abe, Y., Frey, C. J., & Randall, R. C. (2000). Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 Layers 10 and 11 Middle Stone Age larger mammal fauna. Journal of Human Evolution, 38(1), 197–233.CrossRefGoogle Scholar
  17. Martín, F. M. (2008). Bone-crunching felids at the end of the Pleistocene in Fuego-Patagonia, Chile. Journal of Taphonomy, 6(3–4), 337–372.Google Scholar
  18. Mengoni Goñalons, G. L. (1987). Modificaciones culturales y animales en los huesos de los niveles inferiores del sitio Tres Arroyos 1 (Tierra del Fuego, Chile). Annales del Instituto de la Patagonia (Serie Ciencias Sociales), 17, 61–66.Google Scholar
  19. Monahan, C. M. (1996). New zooarchaeological data from Bed II, Olduvai Gorge, Tanzania: Implications for hominid behavior in the early Pleistocene. Human Evolution, 31(2), 93–128.Google Scholar
  20. Monchot, H., & Mashkour, M. (2010). Hyenas around the city (Kashan, Iran). Journal of Taphonomy, 8(1), 17–32.Google Scholar
  21. Mondini, N. M. (1995). Artiodactyl prey transport by foxes in Puna rock shelters. Current Anthropology, 36(3), 520–524.CrossRefGoogle Scholar
  22. Mondini, N. M. (2002). Carnivore Taphonomy and the early human occupations of the Andes. Journal of Archaeological Science, 29(7), 791–801.CrossRefGoogle Scholar
  23. Mondini, N. M. (2005). Magnitude of faunal accumulations by carnivores and humans in the South American Andes. In T. O'Connor (Ed.), Biosphere to lithosphere. New studies in vertebrate taphonomy (pp. 16–24). Oxford: Oxbow books.Google Scholar
  24. Mondini, N. M., & Muñoz, A. S. (2008). Pumas as taphonomic agents: A comparative analysis of actualistic studies in the Neotropics. Quaternary International, 180(1), 52–62.CrossRefGoogle Scholar
  25. Oliver, J. S. (1989). Analogues and site context: Bone damages from Shield Trap Cave (24CB91), Carbon County, Montana, USA. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 73–98). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  26. Stiner, M. C. (1992). Overlapping species "choice" by Italian Upper Pleistocene Predators. Current Anthropology, 33(4), 433–451.CrossRefGoogle Scholar
  27. Stiner, M. C., Arsebük, G., & Howell, F. C. (1996). Cave bears and Paleolithic artifacts in Yarimburgaz cave, Turkey: Dissecting a palimpsest. Geoarchaeology, 11(4), 279–327.CrossRefGoogle Scholar
  28. Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21(1), 27–48.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations