Invertebrate, Plant, and Geological Effects on Bone

  • Diane Gifford-Gonzalez


This chapter reviews the diverse effects that invertebrates, plants, weathering, sedimentary processes, and diagenesis can have on bone surfaces, interior structure, and ultimate survival. It aims to alert zooarchaeologists to processes that can affect skeletal elements soon after their discard, and thus possibly be displayed by archaeofaunal specimens as surface modifications or altered element frequencies. Abrasion presents interpretive challenges because several processes mobilize the same effectors to alter bone surfaces, and the chapter presents the useful distinction between impact and sliding abrasion, giving examples and illustrations. Microbial organisms have been shown to enlarge bone tissue pore spaces, in some cases enhancing diagenesis and in others enabling bone dissolution and destruction. Diagenesis was once thought to begin only after burial, but actualistic research has shown that this can begin when bones rest upon soil surfaces, and the chapter offers a guide to literature of this topic.


Bioerosion Wedl tunnel MFD Insects Root etching Weathering Abrasion Aqueous transport Diagenesis 


  1. Andrews, P. (1990). Owls, caves, and fossils. Predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK. Chicago: University of Chicago Press.Google Scholar
  2. Bader, K. S., Hasiotis, S. T., & Martin, L. D. (2009). Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the Upper Jurassic Morrison Formation, Northeastern Wyoming. Palaios, 24(3), 140–158.Google Scholar
  3. Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolph, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.Google Scholar
  4. Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.CrossRefGoogle Scholar
  5. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1989). Nonhuman bone modification to Miocene fossils from Pakistan. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 99–120). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  6. Behrensmeyer, A. K., Stayton, C. T., & Chapman, R. E. (2003). Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology, 29(1), 52–70.CrossRefGoogle Scholar
  7. Belardi, J. B., & Rindel, D. (2008). Taphonomic and archeological aspects of massive mortality processes in guanaco (Lama guanicoe) caused by winter stress in Southern Patagonia. Quaternary International, 180(1), 38–51.CrossRefGoogle Scholar
  8. Blumenschine, R. J., Prassack, K. A., Kreger, C. D., & Pante, M. C. (2007). Carnivore tooth-marks, microbial bioerosion, and the invalidation of Domínguez-Rodrigo and Barba’s (2006) test of Oldowan hominin scavenging behavior. Journal of Human Evolution, 53(4), 420–426.CrossRefGoogle Scholar
  9. Boaz, N. T., & Behrensmeyer, A. K. (1976). Hominid taphonomy: Transport of human skeletal parts in an artificial fluvial environment. American Journal of Physical Anthropology, 45(1), 53–60.CrossRefGoogle Scholar
  10. Bocheński, Z. M., & Tomek, T. (1997). Preservation of bird bones: Erosion versus digestion by owls. International Journal of Osteoarchaeology, 7(4), 372–387.CrossRefGoogle Scholar
  11. Borella, F., & Muñoz, A. S. (2006). Observaciones tafonómicas sobre restos de pinnípedos en la costa norte fuegina (Argentina). Intersecciones en Antropología, 7(1–2), 399–403.Google Scholar
  12. Borrero, L. A. (1990). Taphonomy of guanaco bones in Tierra del Fuego (Argentina). Quaternary Research, 34(3), 361–371.CrossRefGoogle Scholar
  13. Brain, C. K. (1965). Bone weathering and the problem of bone pseudo-tools. South African Journal of Science, 63(3), 97–99.Google Scholar
  14. Brain, C. K. (1974). Some suggested procedures in the analysis of bone accumulations from Southern African quaternary sites. Annals of the Transvaal Museum, 29(1), 1–8.Google Scholar
  15. Bromage, T. G. (1984). Interpretation of scanning electron microscope images of abraded forming bone surfaces. American Journal of Physical Anthropology, 64(2), 161–178.CrossRefGoogle Scholar
  16. Cruz, I. (2008). Avian and mammalian bone taphonomy in southern continental Patagonia: A comparative approach. Quaternary International, 180(1), 30–37.CrossRefGoogle Scholar
  17. Cutler, A. H., Behrensmeyer, A. K., & Chapman, R. E. (1999). Environmental information in a recent bone assemblage: Roles of taphonomic processes and ecological change. Palaeogeography, Palaeoclimatology, Palaeoecology, 149(1–4), 359–372.Google Scholar
  18. Davis, P. G. (1997). The bioerosion of bird bones. International Journal of Osteoarchaeology, 7(4), 388–401.CrossRefGoogle Scholar
  19. Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50(2), 170–194.Google Scholar
  20. Domínguez-Rodrigo, M., & Barba, R. (2007). Five more arguments to invalidate the passive scavenging version of the carnivore-hominid-carnivore model: A reply to Blumenschine et al. (2007a). Journal of Human Evolution, 53(4), 427–433.CrossRefGoogle Scholar
  21. Fejfar, O., & Kaiser, T. M. (2005). Insect bone-modification and paleoecology of Oligocene mammal-bearing sites in the Doupov Mountains, northwestern Bohemia. Palaeontologia Electronica, 8(1), 1–11.Google Scholar
  22. Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications: 1001+ images of fossil and recent mammal bone modification (Vertebrate paleobiology and paleoanthropology). Dordrecht: Springer.Google Scholar
  23. Fiorillo, A. R. (1995). Possible influence of low temperature on bone weathering in Curecanti National Recreation Area, southwest Colorado. Current Research in the Pleistocene, 12, 69–71.Google Scholar
  24. Gifford, D. P. (1984). Taphonomic specimens, Lake Turkana. In National Geographic Research Reports, National Geographic Research Reports (Vol. 17, pp. 419–428). Washington, DC: National Geographic Society.Google Scholar
  25. Gifford, D. P., & Behrensmeyer, A. K. (1977). Observed formation and burial of a recent human occupation site in Kenya. Quaternary Research, 8(3), 245–266.CrossRefGoogle Scholar
  26. Gifford, D. P., Isaac, G. L., & Nelson, C. M. (1980). Evidence for predation and pastoralism at Prolonged Drift, a Pastoral Neolithic site in Kenya. Azania, 15, 57–108.Google Scholar
  27. Gifford-Gonzalez, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., & Thunen, R. L. (1985). The third dimension in site structure: An experiment in trampling and vertical dispersal. American Antiquity, 50(4), 803–818.CrossRefGoogle Scholar
  28. Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine, Science and the Law, 21(4), 243–265.CrossRefGoogle Scholar
  29. Haynes, G. (1988). Longitudinal studies of African elephant death and bone deposits. Journal of Archaeological Science, 15(2), 131–157.CrossRefGoogle Scholar
  30. Haynes, G. (1991). Mammoths, mastodons, and elephants. Biology, behavior, and the fossil record. Cambridge: Cambridge University Press.Google Scholar
  31. Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44(3), 319–328.CrossRefGoogle Scholar
  32. Jans, M. M. E. (2008). Microbial bioerosion of bone: A review. In M. Wisshak & L. Tapanila (Eds.), Current developments in bioerosion, Erlangen earth conference series (pp. 397–413). Berlin: Springer-Verlag.Google Scholar
  33. Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31(1), 87–95.CrossRefGoogle Scholar
  34. Koch, P. L. (2007). Isotopic study of the biology of modern and fossil vertebrates. In R. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (2nd ed., pp. 99–154). Malden, MA: Blackwell Publishing.CrossRefGoogle Scholar
  35. Lawrence, D. R. (1979a). Biostratinomy. In D. Jablonski & R. W. Fairbridge (Eds.), Encyclopedia of paleontology (pp. 99–102). Stroudsburg, PA: Dowden, Hutchinson & Ross.CrossRefGoogle Scholar
  36. Lawrence, D. R. (1979b). Diagenesis of fossils - fossildiagenese. In D. Jablonski & R. W. Fairbridge (Eds.), Encyclopedia of paleontology (pp. 245–247). Stroudsburg, PA: Dowden, Hutchinson & Ross.CrossRefGoogle Scholar
  37. Lee-Thorp, J. A., & Sealy, J. C. (2008). Beyond documenting diagenesis: The fifth international bone diagenesis workshop. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 129–133.CrossRefGoogle Scholar
  38. Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.Google Scholar
  39. Lyman, R. L., & Fox, G. L. (1989). A critical evaluation of bone weathering as an indication of bone assemblage formation. Journal of Archaeological Science, 16(3), 293–317.CrossRefGoogle Scholar
  40. Miller, G. J. (1975). A study of cuts, grooves, and other marks on recent and fossil bone: II weathering cracks, fractures, splinters and other similar natural phenomena. In E. H. Swanson (Ed.), Lithic technology: Making and using stone tools(pp. 211–226). Chicago: Aldine.Google Scholar
  41. Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Tóth, A., et al. (2014). Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology, 40(4), 560–583.CrossRefGoogle Scholar
  42. Oakley, K. P. (1964). The problem of man's antiquity: An historical survey. Bulletin of the British Museum (Natural History), 9(5), 85–155.Google Scholar
  43. Olsen, S. L. (1989). On distinguishing natural from cultural damage on archaeological antler. Journal of Archaeological Science, 16(2), 125–135.CrossRefGoogle Scholar
  44. Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15(5), 535–554.CrossRefGoogle Scholar
  45. Potts, R. B. (1986). Temporal span of bone accumulation at Olduvai Gorge and implications for early hominid foraging behavior. Paleobiology, 12, 25–31.CrossRefGoogle Scholar
  46. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology(2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  47. Rogers, A. R. (2000). On equifinality in faunal analysis. American Antiquity, 65(4), 709–723.Google Scholar
  48. Rolfe, W. D. I., & Brett, D. W. (1969). Fossilization processes. In G. Eglinton & M. T. J. Murphy (Eds.), Organic geochemistry: Methods and results (pp. 213–244). New York: Springer-Verlag.CrossRefGoogle Scholar
  49. Seilacher, A. (1973). Biostratinomy: the sedimentology of biological standardized particles. In R. N. Ginsburg (Ed.), Evolving concepts in sedimentology (pp. 159–177). Baltimore: John Hopkins University Press.Google Scholar
  50. Shipman, P. (1989). Altered bones from Olduvai Gorge, Tanzania: Techniques, problems, and implications of their recognition. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 317–334). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.Google Scholar
  51. Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In T. D. Price (Ed.), The chemistry of prehistoric human bone (pp. 211–229). Cambridge: Cambridge University Press.Google Scholar
  52. Sillen, A., Sealy, J. C., & van der Merwe, N. J. (1989). Chemistry and paleodietary research: No more easy answers. American Antiquity, 54(3), 504–512.Google Scholar
  53. Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., & Collins, M. J. (2007). Bone diagenesis in the European Holocene I: Patterns and mechanisms. Journal of Archaeological Science, 34(9), 1485–1493.CrossRefGoogle Scholar
  54. Tappen, M. (1995). Savanna ecology and natural bone deposition: Implications for early hominid site formation, hunting, and scavenging. Current Anthropology, 36(2), 223–260.CrossRefGoogle Scholar
  55. Thorson, R. M., & Guthrie, R. D. (1984). River ice as a taphonomic agent: An alternative hypothesis for bone “artifacts.” Quaternary Research, 22(2), 172–188.Google Scholar
  56. Todd, L. C. (1983). The Horner site: Taphonomy of an early Holocene bison bonebed. Doctoral dissertation, University of New Mexico, Albuquerque.Google Scholar
  57. Trueman, C. N., Behrensmeyer, A. K., Tuross, N., & Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31(6), 721–739.Google Scholar
  58. Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44(3), 371–382.CrossRefGoogle Scholar
  59. Turner-Walker, G., & Jans, M. M. E. (2008). Reconstructing taphonomic histories using histological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 227–235.CrossRefGoogle Scholar
  60. Turner-Walker, G., & Peacock, E. E. (2008). Preliminary results of bone diagenesis in Scandinavian bogs. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 151–159.CrossRefGoogle Scholar
  61. Tuross, N., Behrensmeyer, A. K., & Eanes, E. D. (1989). Strontium increases and crystallinity changes in taphonomic and archaeological bone. Journal of Archaeological Science, 16(6), 661–672.CrossRefGoogle Scholar
  62. Tuross, N., Behrensmeyer, A. K., Eanes, E. D., Fisher, L. W., & Hare, P. E. (1989). Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Applied Geochemistry, 4(3), 261–270.CrossRefGoogle Scholar
  63. Villa, P. (1982). Conjoinable pieces and site formation processes. American Antiquity, 47(2), 276–290.CrossRefGoogle Scholar
  64. Villa, P., & Courtin, J. (1983). The interpretation of stratified sites: a view from underground. Journal of Archaeological Science, 10(3), 267–281.Google Scholar
  65. Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Wyoming University Contributions in Geology, Special Paper, 1, 1–69.Google Scholar
  66. Wedl, C. (1864). Über einen im Zahnbein und Knochen keimenden Pilz. Sitzungsberichte Naturwissenschaftliche Klasse ABI, Mineralogie, Biologie, Erdkunde, 50, 171–193.Google Scholar
  67. Western, D., & Behrensmeyer, A. K. (2009). Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science, 324(5930), 1061–1064.CrossRefGoogle Scholar
  68. White, T. D., & Folkens, P. A. (2005). The human bone manual. Boston: Elsevier Academic.Google Scholar
  69. Wyckoff, R. W. G. (1972). The biochemistry of animal fossils. Bristol: Scientechnica.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations